Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 03010
Number of page(s) 9
Section Wind Turbine and Energy Systems
DOI https://doi.org/10.1051/e3sconf/202454003010
Published online 21 June 2024
  1. Single switch galvanically isolated Quasi z source DC DC converter by Andrii chub Dmitri Vinnikov Department of Electrical Engineering Tallinn University of Technology 2015. [Google Scholar]
  2. M. Malinowski, A. Milczarek, R. Kot, Z. Goryca and J. T. Szuster, “Optimized Energy-Conversion Systems for Small Wind Turbines: Renewable energy sources in modern distributed power generation systems,” IEEE Power Electron. Mag., vol. 2, no. 3, pp. 16–30, Sept. 2015. [CrossRef] [Google Scholar]
  3. M. Malinowski, A. Milczarek, D. Vinnikov and A. Chub, “Wind energy systems,” Chap. 12 in Power Electronic Converters and Systems: Frontiers and Applications, Ed. A. M. Trzynadlowski, London, UK-IET, 2015, pp. 351–394, DOI: 10.1049/PBPO074E_ch12. [Google Scholar]
  4. American Wind Energy Association. AWEA 2010 Small Wind Turbine Global Market Study. [Google Scholar]
  5. R. Wiser and M. Bolinger, 2014 Wind Technologies Market Report, U.S. Department of Energy, Aug. 2015. [Google Scholar]
  6. R. Lanzafame and M. Messina, “Power curve control in micro wind turbine design,” Energy, vol. 35, no. 2, pp. 556–561, Feb. 2010. [CrossRef] [Google Scholar]
  7. L. Mariam, M. Basu and M. F. Conlon, “Community Microgrid based on micro-wind generation system,” Proc. UPEC’2013, pp. 1–6, 2013. [Google Scholar]
  8. A. Chub, T. Jalakas, A. Milczarek, A. Kallaste and M. Malinowski, “Grid integration issues of PMSG-based residential wind turbines,” Proc. PQ’2014, pp. 147–154, 2014. [Google Scholar]
  9. L. Bisenieks, D. Vinnikov and I. Galkin, “PMSG based residential wind turbines: Possibilities and challenges,” Agronomy Research, vol. 11, no. 2, pp. 295–306, June 2013. [Google Scholar]
  10. M. Godoy Simoes, F. Alberto Farret and F. Blaabjerg, “Small Wind Energy Systems,” Elect. Power Components and Syst., vol. 43, no. 12, pp. 1388–1405, July 2015. [CrossRef] [Google Scholar]
  11. H. Mamur, “Design, application and power performance analyses of a micro wind turbine,” Turkish J. Elect. Eng. Comput. Sci., vol. 23, no. 6, pp. 1619–1637, Nov. 2015. [CrossRef] [Google Scholar]
  12. Hong-Geuk Park, Dong-Choon Lee and Heung-Geun Kim, “Cost Effective Converters for Micro Wind Turbine Systems using PMSG,” J. Power Electron., vol. 8, no. 2, pp. 156–162, Apr. 2008. [Google Scholar]
  13. G. Buticchi, E. Lorenzani, F. Immovilli and C. Bianchini, “Active Rectifier With Integrated System Control for Microwind Power Systems,” IEEE Trans. Sustain. Energy, vol. 6, no. 1, pp. 60–69, Jan. 2015. [CrossRef] [Google Scholar]
  14. C. Lumbreras, J. M. Guerrero, P. García, F. Briz and D. Díaz, “Control of a small wind turbine in the high wind speed region,” Proc. ECCE’2014, pp. 4896–4903, 2014. [Google Scholar]
  15. J. Lee and Y. S. Kim, “Sensorless fuzzy-logic-based maximum power point tracking control for a small-scalewind power-generation systems with a switched-mode rectifier,” IET Renewable Power Generation, vol. 10, no. 2, pp. 194–202, Feb. 2016. [CrossRef] [Google Scholar]
  16. N. A. Orlando, M. Liserre, R. A. Mastromauro and A. Dell’Aquila, “A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems,” IEEE Trans. Ind. Inf., vol. 9, no. 3, pp. 1211–1221, Aug. 2013. [CrossRef] [Google Scholar]
  17. S. M. Dehghan, M. Mohamadian and A. Y. Varjani, “A New VariableSpeed Wind Energy Conversion System Using Permanent-Magnet Synchronous Generator and Z -Source Inverter,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 714–724, Sept. 2009. [CrossRef] [Google Scholar]
  18. S. Zhang, K.-J. Tseng, D. M. Vilathgamuwa, T. D. Nguyen andX.-Y. Wang, “Design of a Robust Grid Interface System for PMSGBased Wind Turbine Generators,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 316–328, Jan. 2011. [CrossRef] [Google Scholar]
  19. L. Bisenieks, D. Vinnikov and S. Ott, “Switched inductor quasi-Z-source based backto-back converter for variable speed wind turbines with PMSG,” ElektronikairElektrotechnika, vol. 114, no. 8, pp. 61–66, Oct. 2011. [Google Scholar]
  20. K. Buchert and F. W. Fuchs, “Comparison of three phase rectifier topologies in small wind turbines,” Proc. EPE’14-ECCE Europe, pp 1–10, 2014. [Google Scholar]
  21. K. Buchert and F. W. Fuchs, “Power Losses of Three Phase Rectifier Topologies in Small Wind Turbines,” Proc. PCIM Europe 2015, pp. 1–8, 2015. [Google Scholar]
  22. M. M. Reis, B. Soares, L. H. S. C. Barreto, E. Freitas, C. E. A. Silva, R. T. Bascope and D. S. Oliveira, “A variable speed wind energy conversion system connected to the grid for small wind generator,” Proc. APEC’2008, pp. 751–755, 2008. [Google Scholar]
  23. L. Chen, W. L. Soong, M. Pathmanathan and N. Ertugrul, “Comparison of AC/DC converters and the principles of a new control strategy in small-scale wind turbine systems,” Proc. AUPEC’2012, pp. 1–6, 2012. [Google Scholar]
  24. A. Venkataraman, A. I. Maswood, N. Sarangan and O. H. P. Gabriel, “An Efficient UPF Rectifier for a Stand-Alone Wind Energy Conversion System,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1421–1431, Mar.-Apr. 2014. [CrossRef] [Google Scholar]
  25. Y.-F. Wang, L. Yang, C.-S. Wang, W. Li, W. Qie and S.-J. Tu, “High step-up 3-Phase rectifier with fly-back cells and switched capacitors for small-scaled wind generation systems,” Energies, vol. 8, no. 4,pp. 2742–2768, Apr. 2015. [Google Scholar]
  26. T. B. Lazzarin, F. A. B. Batista, P. J. S. Costa and C. H. I. Font, “Proposal of a modular three-phase SEPIC-DCM rectifier for small wind energy conversion systems,” Proc. ISIE’2015, pp. 398–404, 2015. [Google Scholar]
  27. N. A. Orlando, M. Liserre, V. G. Monopoli, R. A. Mastromauro and A. Dell’Aquila, “Comparison of power converter topologies for permanent magnet small wind turbine system,” Proc. ISIE’2008, pp. 2359–2364, 2008. [Google Scholar]
  28. C. Bianchini, F. Immovilli, E. Lorenzani, A. Bellini and G. Buticchi, “Micro wind turbine system integration guidelines PMSG and inverter front end choices,” Proc. IECON 2012, pp. 1073–1078, 2012. [Google Scholar]
  29. H. C. Chiang and H. Y. Tsai, “Design and implementation of a grid-tied wind power micro-inverter,” IET Renewable Power Generation, vol. 7, no. 5, pp. 493–503, Sept. 2013. [CrossRef] [Google Scholar]
  30. W. Kramer, S. Chakraborty, B. Kroposki, and H. Thomas, “Advanced Power Electronic Interfaces for Distributed Energy Systems. Part I: Systems and Topologies,” Technical Report NREL/TP-581–42672, National Renewable Energy Laboratory, Mar. 2008. [Google Scholar]
  31. R. Burkart and J. W. Kolar, “Component cost models for multi-objective optimizations of switched-mode power converters,” Proc. ECCE’2013, Denver, CO, pp. 2139–2146, 2013. [Google Scholar]
  32. N. Muntean, O. Cornea and D. Petrila, “A new conversion and control system for a small off - grid wind turbine,” Proc. OPTIM’2010, pp. 1167–1173, Brasov, 2010. [Google Scholar]
  33. R. Kot, M. Rolak and M. Malinowski, “Comparison of maximum peak power tracking algorithms for a small wind turbine,” Math. Comput. Simulation, vol. Converters,” IEEE 91, pp. 29–40, May 2013. [Google Scholar]
  34. A. Chub, D. Vinnikov, F. Blaabjerg and F. Z. Peng, “A Review of Galvanically Isolated Impedance-Source DC–DC Trans. Power Electron., vol. 31, no. 4, pp. 2808–2828, Apr. 2016. [CrossRef] [Google Scholar]
  35. A. Blinov, A. Chub, D. Vinnikov and T. Rang, “Feasibility study of Si and SiC MOSFETs in high-gain DC/DC converter for renewable energy applications,” Proc. IECON’2013, pp. 5975–5978, 2013. [Google Scholar]
  36. S. Safari, A. Castellazzi and P. Wheeler, “Experimental and Analytical Performance Evaluation of SiC Power Devices in the Matrix Converter,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2584–2596, May 2014. [CrossRef] [Google Scholar]
  37. C. N. M. Ho, H. Breuninger, S. Pettersson, G. Escobar, L. A. Serpa and A. Coccia, “Practical Design and Implementation Procedure of an Interleaved Boost Converter Using SiC Diodes for PV Applications,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2835–2845, June 2012. [CrossRef] [Google Scholar]
  38. A. Blinov, D. Vinnikov, O. Husev and A. Chub, “Experimental analysis of wide input voltage range qZS-derived push-pull DC/DC converter for PMSG-based wind turbines,” Proc. PCIM Eur., May 14–16, 2013, [Google Scholar]
  39. p A. Chub, O. Husev, and D. Vinnikov, “Input-parallel output-series connection of isolated quasi-Z-source DC-DC converters,” in Proc. PQ’2014, pp. 1–8. [Google Scholar]
  40. A. Chub, O. Husev, and D. Vinnikov, “Comparative study of rectifier topologies for quasi-Z-source derived push-pull converter,” Electronics and Electrical Engineering, vol. 20, no. 6, pp. 29–34, June 2014. [Google Scholar]
  41. Y. P. Siwakoti, Poh Chiang Loh, F. Blaabjerg, S. J. Andreasen, and G. E. Town, “Ysource boost DC/DC converter for distributed generation,” IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 1059–1069, Feb. 2015. [CrossRef] [Google Scholar]
  42. R. Strzelecki, and D. Vinnikov, “Models of the qZ-converters,” Electrical Review (PrzegladElektrotechniczny), vol. 86, no. 6, pp. 80–84, 2010. [Google Scholar]
  43. A. Chub, D. Vinnikov, and T. Jalakas, “Quasi-Z-source isolated DC-DC converters with combined energy transfer for renewable energy sources integration,” in Proc. ICIT’2015, pp. 2896–2900 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.