Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 03012
Number of page(s) 10
Section Wind Turbine and Energy Systems
DOI https://doi.org/10.1051/e3sconf/202454003012
Published online 21 June 2024
  1. Ahmad, T., Zhang, H., & Yan, B. (2020). A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustainable Cities and Society, 55, 102052 https://doi.org/10.1016/j.scs.2020.102052 [CrossRef] [Google Scholar]
  2. R.E. Abdel-Aal, Improving electric load forecasts using network committeesElectric Power Systems Research, 74 (1) (2005), pp. 83–94, https://doi.org/10.1016/j.epsr.2004.09.007 [Google Scholar]
  3. R. Abhinav, N.M. Pindoriya, J. Wu, C. Long, Short-term wind power forecasting using wavelet-based neural network. Energy Procedia, 142 (2017), pp. 455–460, https://doi.org/10.1016/j.egypro.2017.12.071 [Google Scholar]
  4. UN, The Sustainable Development Goals Report 2023: Special edition. https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf [Google Scholar]
  5. I. G. Damousis, M. C. Alexiadis, J. B. Theocharis and P. S. Dokopoulos, “A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation,” in IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 352–361, June 2004, https://doi.org/10.1109/TEC.2003.821865 [CrossRef] [Google Scholar]
  6. A. Kusiak, W. Li, Estimation of wind speed: a data-driven approach, J Wind Eng Ind Aerodyn, 98 (10) (2010), pp. 559–567 https://doi.org/10.1016/j.jweia.2010.04.010 [Google Scholar]
  7. P. Ahlgren, B. Jarneving, R. Rousseau, Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient, Journal of the American Society for Information Science and Technology, 54 (6) (2003), pp. 550–560 https://doi.org/10.1002/asi.10242 [Google Scholar]
  8. Tastu, J., Pinson, P., Kotwa, E., Madsen, H., & Nielsen, H. A. (2011). Spatio-temporal analysis and modeling of short-term wind power forecast errors. Wind Energy, 14(1), 43–60. https://doi.org/10.1002/we.401 [CrossRef] [Google Scholar]
  9. M. He, L. Yang, J. Zhang and V. Vittal, “A Spatio-Temporal Analysis Approach for Short-Term Forecast of Wind Farm Generation,” in IEEE Transactions on Power Systems, vol. 29, no. 4, pp. 1611–1622, July 2014. https://doi.org/10.1109/TPWRS.2014.2299767 [CrossRef] [Google Scholar]
  10. Li, J., Wang, X., & Yu, X. B. (2018). Use of spatio-temporal calibrated wind shear model to improve accuracy of wind resource assessment. Applied energy, 213, 469–485. https://doi.org/10.1016/j.apenergy.2018.01.063 [CrossRef] [Google Scholar]
  11. Ahmed A. and Lee D., 2007, SVR-based wind speed estimation for power control of wind energy generation system. In: Fourth Power Conversion Conference-NAGOYA, PCC-NAGOYA 2007—Conference Proceedings, pp.1431–1436. https://doi.org/10.1109/PCCON.2007.373152 [Google Scholar]
  12. J. Zeng and W. Qiao, “Support vector machine-based short-term wind power forecasting,” 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 2011, pp. 1–8. https://doi.org/10.1109/PSCE.2011.5772573 [Google Scholar]
  13. J. Zeng and W. Qiao, “Short-Term Wind Power Prediction Using a Wavelet Support Vector Machine,” in IEEE Transactions on Sustainable Energy, vol. 3, no. 2, pp. 255–264, April 2012. https://doi.org/10.1109/TSTE.2011.2180029 [CrossRef] [Google Scholar]
  14. Lahouar, A., & Slama, J. B. H. (2017). Hour-ahead wind power forecast based on random forests. Renewable energy, 109, 529–541.https://doi.org/10.1016/j.renene.2017.03.064 [CrossRef] [Google Scholar]
  15. Huang C-J, Kuo P-H. A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems. Energies. 2018; 11(10):2777. https://doi.org/10.3390/en11102777 [CrossRef] [Google Scholar]
  16. Xiao, L., Dong, Y., & Dong, Y. (2018). An improved combination approach based on Adaboost algorithm for wind speed time series forecasting. Energy Conversion and Management, 160, 273–288. https://doi.org/10.1016/j.enconman.2018.01.038 [CrossRef] [Google Scholar]
  17. Hameed, Z., Vatn, J., & Heggset, J. (2011). Challenges in the reliability and maintainability data collection for offshore wind turbines. Renewable Energy, 36(8), 2154–2165. https://doi.org/10.1016/j.renene.2011.01.008 [CrossRef] [Google Scholar]
  18. G.J.W van Bussel, ‘Offshore wind energy, the reliability dilemma’; Proceedings of the International Conference, 2002; Berlin. [Google Scholar]
  19. Lipu, M. H., Miah, M. S., Hannan, M. A., Hussain, A., Sarker, M. R., Ayob, A.,... & Mahmud, M. S. (2021). Artificial intelligence based hybrid forecasting approaches for wind power generation: Progress, challenges and prospects. IEEE Access, 9, 102460–102489. https://doi.org/10.1109/ACCESS.2021.3097102 [CrossRef] [Google Scholar]
  20. Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J., & Conzelmann, G. (2009). Wind power forecasting: State-of-the-art 2009 (No. ANL/DIS-10–1). Argonne National Lab.(ANL), Argonne, IL (United States). https://doi.org/10.2172/968212 [Google Scholar]
  21. Würth, I., Valldecabres, L., Simon, E., Möhrlen, C., Uzunoğlu, B., Gilbert, C.,... &Kaifel, A. (2019). Minute-scale forecasting of wind power—results from the collaborative workshop of IEA Wind task 32 and 36. Energies, 12(4), 712 https://doi.org/10.3390/en12040712 [CrossRef] [Google Scholar]
  22. Yi, J., Lin, W., Hu, J., Dai, J., Zhou, X., & Tang, Y. (2020). An integrated model-driven and data-driven method for on-line prediction of transient stability of power system with wind power generation. IEEE Access, 8, 83472–83482. https://doi.org/10.1109/ACCESS.2020.2991534 [CrossRef] [Google Scholar]
  23. Buhan, S., Özkazanç, Y., &Çadırcı, I. (2016). Wind pattern recognition and reference wind mast data correlations with NWP for improved wind-electric power forecasts. IEEE Transactions on Industrial Informatics, 12(3), 991–1004. [CrossRef] [Google Scholar]
  24. Lange, M., & Focken, U. (2006). Physical approach to short-term wind power prediction (Vol. 208). Berlin: Springer. [Google Scholar]
  25. Zhu, A., Li, X., Mo, Z., & Wu, R. (2017, September). Wind power prediction based on a convolutional neural network. In 2017 International Conference on Circuits, Devices and Systems (ICCDS) (pp. 131–135). IEEE. https://doi.org/10.1109/ICCDS.2017.8120465. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.