Open Access
Issue |
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
|
|
---|---|---|
Article Number | 03013 | |
Number of page(s) | 12 | |
Section | Wind Turbine and Energy Systems | |
DOI | https://doi.org/10.1051/e3sconf/202454003013 | |
Published online | 21 June 2024 |
- Kumar, N. M., Chopra, S. S., Chand, A. A., Elavarasan, R. M., & Shafiullah, G. M. (2020). Hybrid renewable energy microgrid for a residential community: A technoeconomic and environmental perspective in the context of the SDG7. Sustainability, 12(10), 3944 https://doi.org/10.3390/su12103944 [CrossRef] [Google Scholar]
- Trinh, V. L., & Chung, C. K. (2023). Renewable energy for SDG-7 and sustainable electrical production, integration, industrial application, and globalization. Cleaner Engineering and Technology, 15, 100657 https://doi.org/10.1016/j.clet.2023.100657 [CrossRef] [Google Scholar]
- Acker, T. L., Robitaille, A., Holttinen, H., Piekutowski, M., & Tande, J. O. G. (2012). Integration of wind and hydropower systems: results of IEA wind task 24. Wind Engineering, 36(1), 1–17. https://doi.org/10.1260/0309-524X.36.1.1 [CrossRef] [Google Scholar]
- Lopes, V. S., & Borges, C. L. (2014). Impact of the combined integration of wind generation and small hydropower plants on the system reliability. IEEE Transactions on Sustainable Energy, 6(3), 1169–1177. https://doi.org/10.1109/TSTE.2014.2335895 [Google Scholar]
- Lamb, W. F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J. G.,... & Minx, J. (2021). A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental research letters, 16(7), 073005 10.1088/1748-9326/abee4e [CrossRef] [Google Scholar]
- Bibri, S.E., Krogstie, J. Generating a vision for smart sustainable cities of the future: a scholarly backcasting approach. Eur J Futures Res 7, 5 (2019). https://doi.org/10.1186/s40309-019-0157-0 [CrossRef] [Google Scholar]
- Shortridge, J., & Camp, J. S. (2019). Addressing climate change as an emerging risk to infrastructure systems. Risk Analysis, 39(5), 959–967. https://doi.org/10.1111/risa.13234 [CrossRef] [PubMed] [Google Scholar]
- Stewart, M. G., Wang, X., & Nguyen, M. N. (2011). Climate change impact and risks of concrete infrastructure deterioration. Engineering Structures, 33(4), 1326–1337. https://doi.org/10.1016/j.engstruct.2011.01.010 [CrossRef] [Google Scholar]
- Gebretsadik, Y., Fant, C., Strzepek, K., & Arndt, C. (2016). Optimized reservoir operation model of regional wind and hydro power integration case study: Zambezi basin and South Africa. Applied Energy, 161, 574–582.https://doi.org/10.1016/j.apenergy.2015.09.077 [CrossRef] [Google Scholar]
- Algarvio, H., Lopes, F., & Santana, J. (2020). Strategic operation of hydroelectric power plants in energy markets: A model and a study on the hydro-wind balance. Fluids, 5(4), 209 https://doi.org/10.3390/fluids5040209 [CrossRef] [Google Scholar]
- Karadöl, İ., Yıldız, C., &Şekkeli, M. (2021). Determining optimal spatial and temporal complementarity between wind and hydropower. Energy, 230, 120790 https://doi.org/10.1016/j.energy.2021.120790 [CrossRef] [Google Scholar]
- Cheng, Q., Liu, P., Feng, M., Cheng, L., Ming, B., Luo, X.,... & Xia, J. (2023). Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency. Applied Energy, 339, 121006 https://doi.org/10.1016/j.apenergy.2023.121006 [CrossRef] [Google Scholar]
- Schmidt, J., Cancella, R., & Junior, A. O. P. (2016). The effect of windpower on longterm variability of combined hydro-wind resources: The case of Brazil. Renewable and Sustainable Energy Reviews, 55, 131–141. https://doi.org/10.1016/j.rser.2015.10.159 [CrossRef] [Google Scholar]
- Danso, D. K., François, B., Hingray, B., & Diedhiou, A. (2021). Assessing hydropower flexibility for integrating solar and wind energy in West Africa using dynamic programming and sensitivity analysis. Illustration with the Akosombo reservoir, Ghana. Journal of Cleaner Production, 287, 125559 https://doi.org/10.1016/j.jclepro.2020.125559 [CrossRef] [Google Scholar]
- Opan, M., Ünlü, M., Özkale, C., Çelik, C., & Saraç, H. İ. (2019). Optimal energy production from wind and hydroelectric power plants. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(18), 2219–2232. https://doi.org/10.1080/15567036.2018.1555626 [CrossRef] [Google Scholar]
- Tang, Y., Fang, G., Tan, Q., Wen, X., Lei, X., & Ding, Z. (2020). Optimizing the sizes of wind and photovoltaic power plants integrated into a hydropower station based on power output complementarity. Energy Conversion and Management, 206, 112465. https://doi.org/10.1016/j.enconman.2020.112465 [Google Scholar]
- Acker, T., & Pete, C. (2012). Western wind and solar integration study: hydropower analysis (No. NREL/SR-5500–53098). National Renewable Energy Lab.(NREL), Golden, CO (United States). https://doi.org/10.2172/1037937 [Google Scholar]
- Hamann, A., & Hug, G. (2016). Integrating variable wind power using a hydropower cascade. Energy Procedia, 87, 108–115. https://doi.org/10.1016/j.egypro.2015.12.339 [CrossRef] [Google Scholar]
- Kern, J. D., Patino-Echeverri, D., & Characklis, G. W. (2014). An integrated reservoirpower system model for evaluating the impacts of wind integration on hydropower resources. Renewable Energy, 71, 553–562. https://doi.org/10.1016/j.renene.2014.06.014 [CrossRef] [Google Scholar]
- Wang, L., Wang, Y., Du, H., Zuo, J., Li, R. Y. M., Zhou, Z.,... & Garvlehn, M. P. (2019). A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study. Applied Energy, 249, 37–45. https://doi.org/10.1016/j.apenergy.2019.04.099 [CrossRef] [Google Scholar]
- Palchak, J. D., Chernyakhovskiy, I., Bowen, T., & Narwade, V. (2019). India 2030 wind and solar integration study: Interim report (No. NREL/TP-6A20–73854). National Renewable Energy Lab.(NREL), Golden, CO (United States). https://doi.org/10.2172/1524771 [Google Scholar]
- Hossain, J. (1993). Grid integration of renewables in developing countries: A case study of high wind penetration in the Tamil Nadu electricity utility. Energy policy, 21(8), 868–874.https://doi.org/10.1016/0301–4215(93)90171-B [CrossRef] [Google Scholar]
- K. Kumar and M. A. Ansari, “Design and development of hybrid wind-hydro power generation system,” 2013 International Conference on Energy Efficient Technologies for Sustainability, Nagercoil, India, 2013, pp. 406–410, https://doi.org/10.1109/ICEETS.2013.6533416 [Google Scholar]
- Baruah, A., Basu, M., & Amuley, D. (2021). Modeling of an autonomous hybrid renewable energy system for electrification of a township: A case study for Sikkim, India. Renewable and Sustainable Energy Reviews, 135, 110158 https://doi.org/10.1016/j.rser.2020.110158 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.