Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 10016
Number of page(s) 9
Section Grid Connected Systems
DOI https://doi.org/10.1051/e3sconf/202454010016
Published online 21 June 2024
  1. Y. Song, C. Wan, X. Hu, H. Qin and K. Lao, “Resilient power grid for smart city,” in iEnergy, vol. 1, no. 3, pp. 325–340, September 2022, doi: 10.23919/IEN.2022.0043. [CrossRef] [Google Scholar]
  2. L. L. Lai and H.-T. Zhang “Smart Grids to Revolutionize Chinese Cities: Challenges and Opportunities,” in IEEE Power and Energy Magazine, vol. 20, no. 5, pp. 26–38, Sept.-Oct. 2022, doi: 10.1109/MPE.2022.3184059. [CrossRef] [Google Scholar]
  3. G. Chen, H. Zhang, H. Hui and Y. Song, “Deep-Quantile-Regression-Based Surrogate Model for Joint Chance-Constrained Optimal Power Flow With Renewable Generation,” in IEEE Transactions on Sustainable Energy, vol. 14, no. 1, pp. 657–672, Jan. 2023, doi: 10.1109/TSTE.2022.3223764. [CrossRef] [Google Scholar]
  4. G. Sun, G. Li, P. Li, S. Xia, Z. Zhu and M. Shahidehpour, “Coordinated Operation of Hydrogen-Integrated Urban Transportation and Power Distribution Networks Considering Fuel Cell Electric Vehicles,” in IEEE Transactions on Industry Applications, vol. 58, no. 2, pp. 2652–2665, March-April 2022, doi: 10.1109/TIA.2021.3109866. [CrossRef] [Google Scholar]
  5. S. R. Far, A. Moeini, A. Chandra and I. Kamwa, “ADMM-Based Multi-Objective Control Scheme for Mitigating the Impact of High Penetration DER Integration in the Modern Distribution Systems,” in IEEE Access, vol. 11, pp. 38589–38603, 2023, doi: 10.1109/ACCESS.2023.3266650. [CrossRef] [Google Scholar]
  6. A. Bagherinezhad, M. M. Hosseini and M. Parvania, “Real-Time Coordinated Operation of Power and Autonomous Electric Ride-Hailing Systems,” in IEEE Transactions on Smart Grid, vol. 14, no. 3, pp. 2214–2225, May 2023, doi: 10.1109/TSG.2023.3247780. [CrossRef] [Google Scholar]
  7. Shih, C. S., Chou, J. J., & Lin, K. J. (2018). WuKong: Secure Run-Time environment and data-driven IoT applications for Smart Cities and Smart Buildings. Journal of Internet Services and Information Security, 8(2), 1–17. [Google Scholar]
  8. T. R. Chaves, M. A. I. Martins, K. A. Martins and A. F. Macedo, “Development of an Automated Distribution Grid With the Application of New Technologies,” in IEEE Access, vol. 10, pp. 9431–9445, 2022, doi: 10.1109/ACCESS.2022.3142683. [CrossRef] [Google Scholar]
  9. L. Liu, Y. Ding, X. Li, H. Wu and L. Xing, “A Container-Driven Service Architecture to Minimize the Upgrading Requirements of User-Side Smart Meters in Distribution Grids,” in IEEE Transactions on Industrial Informatics, vol. 18, no. 1, pp. 719–728, Jan. 2022, doi: 10.1109/TII.2021.3088135. [CrossRef] [Google Scholar]
  10. M. Pau, F. Ponci, A. Monti, C. Muscas and P. A. Pegoraro, “Distributed State Estimation for Multi-Feeder Distribution Grids,” in IEEE Open Journal of Instrumentation and Measurement, vol. 1, pp. 1–12, 2022, Art no. 9000112, doi: 10.1109/OJIM.2022.3198470. [CrossRef] [Google Scholar]
  11. Y. Chen, et al., “Distributed Self-Triggered Control for Frequency Restoration and Active Power Sharing in Islanded Microgrids,” in IEEE Transactions on Industrial Informatics, vol. 19, no. 10, pp. 10635–10646, Oct. 2023, doi: 10.1109/TII.2023.3240738. [CrossRef] [Google Scholar]
  12. A. A. Saadi, A. Soukane, Y. Meraihi, A. B. Gabis and A. Ramdane-Cherif, “A Hybrid Improved Manta Ray Foraging Optimization With Tabu Search Algorithm for Solving the UAV Placement Problem in Smart Cities,” in IEEE Access, vol. 11, pp. 24315–24342, 2023, doi: 10.1109/ACCESS.2023.3255793. [CrossRef] [Google Scholar]
  13. B. Wang, M. Mazhari and C. Y. Chung, “A Novel Hybrid Method for Short-Term Probabilistic Load Forecasting in Distribution Networks,” in IEEE Transactions on Smart Grid, vol. 13, no. 5, pp. 3650–3661, Sept. 2022, doi: 10.1109/TSG.2022.3171499. [CrossRef] [Google Scholar]
  14. Bharathi, C., & Rekha, D. (2023). Load Forecasting for Demand Side Management in Smart Grid using Non-Linear Machine Learning Technique. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(1), 200–214. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.