Open Access
Issue |
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
|
|
---|---|---|
Article Number | 10017 | |
Number of page(s) | 9 | |
Section | Grid Connected Systems | |
DOI | https://doi.org/10.1051/e3sconf/202454010017 | |
Published online | 21 June 2024 |
- Mancarella, P. (2014). MES (multi-energy systems): An overview of concepts and evaluation models. Energy, 65, 1–17. [CrossRef] [Google Scholar]
- Suyanto, H., & Irawati, R. (2017, July). Study trends and challenges of the development of microgrids. In 2017 6th IEEE International Conference on Advanced Logistics and Transport (ICALT) (pp. 160–164). IEEE. [CrossRef] [Google Scholar]
- Ehsan, A., & Yang, Q. (2019). Scenario-based investment planning of isolated multienergy microgrids considering electricity, heating and cooling demand. Applied energy, 235, 1277–1288. [CrossRef] [Google Scholar]
- Geidl, M., & Andersson, G. (2007). Optimal power flow of multiple energy carriers. IEEE Transactions on power systems, 22(1), 145–155. [CrossRef] [Google Scholar]
- Lasseter, R. H. (2011). Smart distribution: Coupled microgrids. Proceedings of the IEEE, 99(6), 1074–1082. [CrossRef] [Google Scholar]
- Asmus, P. (2010). Microgrids, virtual power plants and our distributed energy future. The Electricity Journal, 23(10), 72–82. [CrossRef] [Google Scholar]
- Pudjianto, D., Ramsay, C., & Strbac, G. (2008). Microgrids and virtual power plants: Concepts to support the integration of distributed energy resources. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(7), 731–741. [CrossRef] [Google Scholar]
- Mancarella P, Chicco G. Integrated energy and ancillary services provision in multienergy systems. In: Proceedings of the IX bulk power system dynamics and control symposium (IREP 2013). Rethymnon, Crete, Greece; 25e30 August 2013. [Google Scholar]
- Papaefthymiou, G., Hasche, B., & Nabe, C. (2012). Potential of heat pumps for demand side management and wind power integration in the German electricity market. IEEE Transactions on Sustainable Energy, 3(4), 636–642. [CrossRef] [Google Scholar]
- Cho, H., Mago, P. J., Luck, R., & Chamra, L. M. (2009). Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme. Applied Energy, 86(12), 2540–2549. [CrossRef] [Google Scholar]
- Jiang, Q., Xue, M., & Geng, G. (2013). Energy management of microgrid in gridconnected and stand-alone modes. IEEE transactions on power systems, 28(3), 3380–3389. [CrossRef] [Google Scholar]
- Nunna, H. K., & Doolla, S. (2012). Demand response in smart distribution system with multiple microgrids. IEEE transactions on smart grid, 3(4), 1641–1649. [CrossRef] [Google Scholar]
- Mojica-Nava, E., Macana, C. A., & Quijano, N. (2013). Dynamic population games for optimal dispatch on hierarchical microgrid control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(3), 306–317. [Google Scholar]
- DeForest, N. (2013). Thermal energy storage for electricity peak-demand mitigation: a solution in developing and developed world alike. [Google Scholar]
- Wu, C., Mohsenian-Rad, H., Huang, J., & Wang, A. Y. (2011, December). Demand side management for wind power integration in microgrid using dynamic potential game theory. In 2011 IEEE GLOBECOM Workshops (GC Wkshps) (pp. 1199–1204). IEEE. [CrossRef] [Google Scholar]
- Brearley B.J., Bose K.R., Senthil K., Ayyappan G., “KNN approaches by using ball tree searching algorithm with minkowski distance function on smart grid data”, Indian Journal of Computer Science and Engineering, 13(4), 2022 [Google Scholar]
- Mashayekh, S., Stadler, M., Cardoso, G., Heleno, M., Madathil, S. C., Nagarajan, H.,... & Wang, J. (2017). Security-constrained design of isolated multi-energy microgrids. IEEE Transactions on Power Systems, 33(3), 2452–2462. [Google Scholar]
- Santos, S. F., Fitiwi, D. Z., Bizuayehu, A. W., Shafie-Khah, M., Asensio, M., Contreras, J.,... & Catalao, J. P. (2016). Novel multi-stage stochastic DG investment planning with recourse. IEEE Transactions on Sustainable Energy, 8(1), 164–178. [Google Scholar]
- Mashayekh, S., Stadler, M., Cardoso, G., & Heleno, M. (2017). A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multienergy microgrids. Applied Energy, 187, 154–168. [CrossRef] [Google Scholar]
- M L B., Sripriya T., Muthuraj B., Kumar D.S., Venkatesh V., Sridevi B.S., Krishna M.M.S., Rajan K. & Diriba A. (2022), “Deep Learning-Based Smart Hybrid Solar Water Heater Erection Model to Extract Maximum Energy”,International Journal of Photoenergy. [Google Scholar]
- Sandeep Kumar Reddy, Saravanan T., N.T. Velusudha & Sunder Selwyn T., (2023), “Smart Grid Management System Based on Machine Learning Algorithms for Efficient Energy Distribution”,E3S Web Conf. 387 02005. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.