Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 14003
Number of page(s) 9
Section VLSI, Artificial Intelligence and Physics
DOI https://doi.org/10.1051/e3sconf/202454014003
Published online 21 June 2024
  1. R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978. [CrossRef] [Google Scholar]
  2. V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology. Berlin, Germany: Springer-Verlag, 1986, pp. 417–426. [Google Scholar]
  3. N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48, no. 177, pp. 203–209, 1987. [CrossRef] [Google Scholar]
  4. P. L. Montgomery, “Modular multiplication without trial division,” Math. Comput., vol. 44, no. 170, pp. 519–521, Apr. 1985. [CrossRef] [Google Scholar]
  5. Y. S. Kim, W. S. Kang, and J. R. Choi, “Asynchronous implementation of 1024-bit modular processor for RSA cryptosystem,” in Proc. 2nd IEEE Asia-Pacific Conf. ASIC, Aug. 2000, pp. 187–190. [Google Scholar]
  6. V. Bunimov, M. Schimmler, and B. Tolg, “A complexity-effective version of Montgomery’s algorihm,” in Proc. Workshop Complex. Effective Designs, May 2002. [Google Scholar]
  7. H. Zhengbing, R. M. Al Shboul, and V. P. Shirochin, “An efficient architecture of 1024-bits cryptoprocessor for RSA cryptosystem based on modified Montgomery’s algorithm,” in Proc. 4th IEEE Int. Workshop Intell.Data Acquisition Adv. Comput. Syst., Sep. 2007, pp. 643–646. [Google Scholar]
  8. Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang, “An efficient CSA architecture for Montgomery modular multiplication,” Microprocessors Microsyst., vol. 31, no. 7, pp. 456–459, Nov. 2007. [CrossRef] [Google Scholar]
  9. C. McIvor, M. McLoone, and J. V. McCanny, “Modified Montgomery modular multiplication and RSA exponentiation techniques,” IEE Proc.-Comput.Digit.Techn., vol. 151, no. 6, pp. 402–408, Nov. 2004. [CrossRef] [Google Scholar]
  10. S.-R. Kuang, J.-P. Wang, K.-C. Chang, and H.-W. Hsu, “Energy-efficient highthroughput Montgomery modular multipliers for RSA cryptosystems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 11, pp. 1999–2009, Nov. 2013. [CrossRef] [Google Scholar]
  11. J. C. Neto, A. F. Tenca, and W. V. Ruggiero, “A parallel k-partition method to perform Montgomery multiplication,” in Proc. IEEE Int. Conf. Appl.-Specific Syst., Archit., Processors, Sep. 2011, pp. 251–254. [Google Scholar]
  12. J. Han, S. Wang, W. Huang, Z. Yu, and X. Zeng, “Parallelization of radix-2 Montgomery multiplication on multicore platform,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 12, pp. 2325–2330, Dec. 2013. [CrossRef] [Google Scholar]
  13. P. Amberg, N. Pinckney, and D. M. Harris, “Parallel high-radix Montgomery multipliers,” in Proc. 42nd Asilomar Conf. Signals, Syst., Comput., Oct. 2008, pp. 772–776. [Google Scholar]
  14. G. Sassaw, C. J. Jimenez, and M. Valencia, “High radix implementation of Montgomery multipliers with CSA,” in Proc. Int. Conf. Microelectron., Dec. 2010, pp. 315–318. [Google Scholar]
  15. A. Miyamoto, N. Homma, T. Aoki, and A. Satoh, “Systematic design of RSA processors based on high-radix Montgomery multipliers,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 7, pp. 1136–1146, Jul. 2011. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.