Open Access
Issue
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
Article Number 14004
Number of page(s) 7
Section VLSI, Artificial Intelligence and Physics
DOI https://doi.org/10.1051/e3sconf/202454014004
Published online 21 June 2024
  1. S. Cherian, & C. Singh, “Real Time Implementation of Object Tracking Through webcam,” Internation Journal of Research in Engineering and Technology, 128–132, (2014). [Google Scholar]
  2. Z. Zhao, Q. Zheng, P. Xu, S. T, & X. Wu, “Object detection with deep learning: A review,” IEEE transactions on neural networks and learning systems, 30(11), 3212–3232, (2019). [CrossRef] [Google Scholar]
  3. N. Dalal, & B. Triggs, “Histograms of oriented gradients for human detection,” In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 1, pp. 886–893). IEEE, (2005, June). [Google Scholar]
  4. R. Girshick., J. Donahue, T. Darrell, & J. Malik, “Region-based convolutional networks for accurate object detection and segmentation,” IEEE transactions on pattern analysis and machine intelligence, 38(1), 142–158, (2015). [Google Scholar]
  5. X. Wang, A. Shrivastava, & A. Gupta, “A-fast-rcnn: Hard positive generation via adversary for object detection,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2606–2615), (2017). [Google Scholar]
  6. S. Ren, K. H, R. Girshick, & J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” In Advances in neural information processing systems (pp. 91–99), (2015). [Google Scholar]
  7. J. Redmon, S. Divvala, R. Girshick, & A. Farhadi, “You only look once: Unified, realtime object detection,” In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779–788), (2016). [Google Scholar]
  8. J. Redmon, & A. Farhadi, “YOLO9000: better, faster, stronger,” In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7263–7271) (2017). [Google Scholar]
  9. J. Redmon & A. Farhadi, “Yolov3: An incremental improvement,” ArXiv preprint arXiv: 1804.02767, (2018). [Google Scholar]
  10. R. Bharti, K. Bhadane, P. Bhadane, & A. Gadhe, “Object Detection and Recognition for Blind Assistance,” International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395–0056 Volume: 06, (2019). [Google Scholar]
  11. T. Lin, Y. Maire, M. Belongie, S. Hays, J. Perona, P. Ramanan, D., & C.L. Zitnick, “Microsoft coco: Common objects in context,” In European conference on computer vision (pp. 740–755). Springer, Cham, (2014, September). [Google Scholar]
  12. Lowe D., “Distinctive image features from scale-invariant keypoints, “ Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004. [CrossRef] [Google Scholar]
  13. Dalal N. and Triggs B., “Histograms of oriented gradients for human detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2005, pp. 886–893. [Google Scholar]
  14. Everingham M., van Gool L., Williams C. K. I., Winn J., and Zisserman A., “The PASCAL visual object classes (VOC) challenge,” Int. J. Comput. Vis., vol. 80, no. 2, pp. 303–338, 2010. [CrossRef] [Google Scholar]
  15. Fukushima K., “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biol. Cybern., vol. 36, no. 4, pp. 193–202, 1980. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.