Open Access
Issue
E3S Web Conf.
Volume 543, 2024
International Process Metallurgy Conference (IPMC 2023)
Article Number 01001
Number of page(s) 6
Section Mineral Processing and Coal Upgrading
DOI https://doi.org/10.1051/e3sconf/202454301001
Published online 03 July 2024
  1. K. E. Fitzgibbon and T. J. Veasey, “Thermally assisted liberation - a review,” Miner. Eng., vol. 3, no. 1-2, 1990, doi: 10.1016/0892-6875(90)90090-X. [Google Scholar]
  2. A. Somani, T. K. Nandi, S. K. Pal, and A. K. Majumder, “Pre-treatment of rocks prior to comminution - A critical review of present practices,” Int. J. Min. Sci. Technol., vol. 27, no. 2, pp. 339-348, 2017, doi: 10.1016/j.ijmst.2017.01.013. [CrossRef] [Google Scholar]
  3. M. Toifl, P. Hartlieb, R. Meisels, T. Antretter, and F. Kuchar, “Numerical study of the influence of irradiation parameters on the microwave-induced stresses in granite,” Miner. Eng., vol. 103-104, pp. 78-92, Apr. 2017, doi: 10.1016/J.MINENG.2016.09.011. [CrossRef] [Google Scholar]
  4. K. E. Haque, “Microwave energy for mineral treatment processes - A brief review,” Int. J. Miner. Process., vol. 57, no. 1, 1999, doi: 10.1016/s0301-7516(99)00009-5. [CrossRef] [Google Scholar]
  5. T. T. Chen, J. E. Dutrizac, K. E. Haque, W. Wyslouzil, and S. Kashyap, “The relative transparency of minerals to microwave radiation,” Can. Metall. Q., vol. 23, no. 3, pp. 349-351, 1984, doi: 10.1179/cmq.1984.23.3.349. [CrossRef] [Google Scholar]
  6. J. W. Walkiewicz, G. Kazonich, and S. L. McGill, “Microwave Heating Characteristics of Selected Minerals and Compounds,” Miner. Metall. Process., vol. 5, no. 1, pp. 39-42, Feb. 1988, doi: 10.1007/BF03449501. [Google Scholar]
  7. S. W. Kingman and N. A. Rowson, “Effect of microwave radiation on the magnetic properties of minerals,” J. Microw. Power Electromagn. Energy, vol. 35, no. 3, pp. 144-150, 2000, doi: 10.1080/08327823.2000.11688431. [Google Scholar]
  8. A. R. Batchelor, D. A. Jones, S. Plint, and S. W. Kingman, “Deriving the ideal ore texture for microwave treatment of metalliferous ores,” Miner. Eng., vol. 84, pp. 116-129, 2015, doi: 10.1016/j.mineng.2015.10.007. [CrossRef] [Google Scholar]
  9. A. J. Buttress et al., “Towards large scale microwave treatment of ores : Part 1 - Basis of design , construction and commissioning,” Miner. Eng., vol. 109, pp. 169-183, 2017, doi: 10.1016/j.mineng.2017.03.006. [CrossRef] [Google Scholar]
  10. M. A. Rasyid, A. Aslam, A. Rafiei, A. P. Sasmito, and F. Hassani, “Microwave Impacts on More Sustainable Kimberlite Processing,” 2022. [Google Scholar]
  11. M. A. Rasyid, A. Aslam, A. Rafiei, A. P. Sasmito, and F. Hassani, “Transforming Power Draw Trend of Ore Crushing by Applying Microwave Heating,” Energy Proc., 2022. [Google Scholar]
  12. S. W. Kingman and N. A. Rowson, “Microwave Treatment of Minerals - A Review,” Miner. Eng., vol. 11, no. 11, pp. 1081-1087, 1998. [CrossRef] [Google Scholar]
  13. S. W. Kingman, G. M. Corfield, and N. A. Rowson, “Effects of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian ilmenite ore,” Magn. Electr. Sep., vol. 9, no. 3, pp. 131-148, 1999, doi: 10.1155/1999/57075. [CrossRef] [Google Scholar]
  14. R. K. Amankwah and G. Ofori-Sarpong, “Microwave heating of gold ores for enhanced grindability and cyanide amenability,” Miner. Eng., vol. 24, no. 6, pp. 541-544, 2011, doi: 10.1016/j.mineng.2010.12.002. [CrossRef] [Google Scholar]
  15. R. Henda, A. Hermas, R. Gedye, and M. R. Islam, “Microwave enhanced recovery of nickel-copper ore: Communication and floatability aspects,” J. Microw. Power Electromagn. Energy, vol. 40, no. 1, pp. 7-16, 2006, doi: 10.1080/08327823.2005.11688522. [Google Scholar]
  16. C. Marion, A. Jordens, C. Maloney, R. Langlois, and K. E. Waters, “Effect of microwave radiation on the processing of a Cu-Ni sulphide ore,” Can. J. Chem. Eng., vol. 94, no. 1, pp. 117-127, 2016, doi: 10.1002/cjce.22359. [CrossRef] [Google Scholar]
  17. S. H. Guo, G. Chen, J. H. Peng, J. Chen, D. B. Li, and L. J. Liu, “Microwave assisted grinding of ilmenite ore,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 21, no. 9, pp. 2122-2126, 2011, doi: 10.1016/S1003-6326(11)60983-7. [CrossRef] [Google Scholar]
  18. A. Aslam, M. A. Rasyid, A. Rafiei, A. P. Sasmito, and F. Hassani, “Application of Dense Media Separation Data for Studying the Mineral Liberation of Kimberlite Treated by Microwave Irradiations,” 26th World Min. Congr. Proc., p. 2618, 2023. [Google Scholar]
  19. M. Omran, T. Fabritius, and R. Mattila, “Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces,” Powder Technol., vol. 269, pp. 7-14, 2015, doi: 10.1016/j.powtec.2014.08.073. [CrossRef] [Google Scholar]
  20. A. R. Batchelor et al., “Towards large scale microwave treatment of ores : Part 2 - Metallurgical testing,” Miner. Eng., vol. 111, no. May, pp. 5-24, 2017, doi: 10.1016/j.mineng.2017.05.003. [CrossRef] [Google Scholar]
  21. G. Scott, S. M. Bradshaw, and J. J. Eksteen, “The effect of microwave pretreatment on the liberation of a copper carbonatite ore after milling,” Int. J. Miner. Process., vol. 85, no. 4, pp. 121-128, 2008, doi: 10.1016/j.minpro.2007.08.005. [CrossRef] [Google Scholar]
  22. R. K. Amankwah, A. U. Khan, C. A. Pickles, and W. T. Yen, “Improved grindability and gold liberation by microwave pretreatment of a free-milling gold ore,” Trans. Institutions Min. Metall. Sect. C Miner. Process. Extr. Metall., vol. 114, no. 1, pp. 30-36, 2005, doi: 10.1179/037195505X28447. [CrossRef] [Google Scholar]
  23. A. R. Batchelor, D. A. Jones, S. Plint, and S. W. Kingman, “Increasing the grind size for effective liberation and flotation of a porphyry copper ore by microwave treatment,” Miner. Eng., vol. 94, pp. 61-75, 2016, doi: 10.1016/j.mineng.2016.05.011. [CrossRef] [Google Scholar]
  24. M. G. Rylatt and G. M. Popplewell, “Diamond processing at Ekati in Canada,” Min. Eng., vol. 51, no. 2, pp. 19-25, 1999. [Google Scholar]
  25. R. C. Dunne, S. K. Kawatra, and C. A. Young, SME Mineral processing & Extractive metallurgy handbook. Society for Mining, Metallurgy & Exploration, 2019. [Google Scholar]
  26. H. A. Rollo and H. E. Jamieson, “Interaction of diamond mine waste and surface water in the Canadian Arctic,” Appl. Geochemistry, vol. 21, no. 9, pp. 1522-1538, Sep. 2006, doi: 10.1016/J.APGEOCHEM.2006.05.008. [CrossRef] [Google Scholar]
  27. A. J. Vietti, “A strategy for improving water recovery in kimberlitic diamond mines,” J. South. African Inst. Min. Metall., vol. 119, no. 2, pp. 165-171, Feb. 2019, doi: 10.17159/2411-9717/2019/V119N2A9. [Google Scholar]
  28. R. Hogg, “Particle Characterization,” in Principles of Mineral Processing, M.C. Fuerstenau and K.N. Han, Eds. Society for Mining, Metallurgy & Exploration, 2003, pp. 120-123. doi: 10.1201/9781315141381-2. [Google Scholar]
  29. T. Allen, “Particle size, shape and distribution BT - Particle Size Measurement,” T. Allen, Ed. Boston, MA: Springer US, 1981, pp. 103-164. doi: 10.1007/978-1-4899-3063-7_4. [Google Scholar]
  30. B. A. Wills and J. A. Finch, “Particle size analysis,” in Wills’ Mineral Processing Technology, 2016, pp. 144-157. doi: 10.1016/B978-0-12-409547-2.14522-6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.