Open Access
Issue |
E3S Web Conf.
Volume 543, 2024
International Process Metallurgy Conference (IPMC 2023)
|
|
---|---|---|
Article Number | 03004 | |
Number of page(s) | 5 | |
Section | Physical Metallurgy and Corrosion | |
DOI | https://doi.org/10.1051/e3sconf/202454303004 | |
Published online | 03 July 2024 |
- I. B. Beech and J. Sunner, “Biocorrosion: towards understanding interactions between biofilms and metals”, Current Opinion in Biotechnology, vol. 15, pp. 181-186, 2004. [CrossRef] [Google Scholar]
- J. Yang, Z. B. Wang, Y. X. Qiao, Y. G. Zheng, “Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel”, Corrosion Science, vol. 199, 110210, 2022. [CrossRef] [Google Scholar]
- H. Wan, T. Zhang, Z. Xu, Z. Rao, G. Zhang, G. Li, H. Liu, “Effect of sulfate reducing bacteria on the galvanic corrosion behavior of X52 carbon steel and 2205 stainless steel bimetallic couple”, Corrosion Science, vol. 212, 110963, 2023. [CrossRef] [Google Scholar]
- X. Yang, J. Shao, Z. Liu, D. Zhang, L. Cui, C. Du, X. Li, “Stress-assisted microbiologically influenced corrosion mechanism of 2205 duplex stainless steel caused by sulfate-reducing bacteria”, Corrosion Science, vol. 173, 108746, 2020. [CrossRef] [Google Scholar]
- W. Dou, R. Jia, P. Jin, J. Liu, S. Chen, T. Gu, “Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria”, Corrosion Science, vol. 144, pp. 237-248, 2018. [CrossRef] [Google Scholar]
- S. Chen, P. Wang, D. Zhang, “Corrosion behavior of copper under biofilm of sulfate-reducing bacteria”, Corrosion Science, vol. 87, pp. 407-415, 2014. [CrossRef] [Google Scholar]
- X. Zhao, C. Yan, J. Shao, J. Yang, J. Liu, D. Sun, S. Wang, “Influence of Pseudomonas aeruginosa and Sulfate-reducing bacteria composite on the corrosion behavior of brass”, International Journal of Electrochemical Science, vol. 14, no. 7, pp. 6468-6477, 2019. [CrossRef] [Google Scholar]
- T. S. Rao, A. J. Kora, B. Anupkumar, S. V. Narasimhan, R. Feser, “Pitting corrosion of titanium by a freshwater strain of sulphate reducing bacteria (Desulfovibrio vulgaris)”, Corrosion Science, vol. 47, no. 5, pp. 1071-1084, 2005. [CrossRef] [Google Scholar]
- Z. Xu, T. Zhang, H. Wan, H. Liu, T. Gu, H. Liu, “Accelerated development of Ti-6Al-4V microbial corrosion triggered by electroactive sulfate-reducing Desulfovibrio ferrophilus biofilm in enriched artificial seawater containing soluble electron shuttle”, Corrosion Science, vol. 220, 111306, 2023. [CrossRef] [Google Scholar]
- Y. Liu, Q. Wang, Y. Song, D. Zhang, S. Yu, X. Zhu, “A study on the corrosion behavior of Ce-modified cast AZ91 magnesium alloy in the presence of sulfate-reducing bacteria”, Journal of Alloys and Compounds, vol. 473, no. 1-2, pp. 550-556, 2009. [CrossRef] [Google Scholar]
- F. Guan, X. Zhai, J. Duan, J. Zhang, K. Li, B. Hou, “Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy”, Surface & Coatings Technology, vol. 316, pp. 171-179, 2017. [CrossRef] [Google Scholar]
- A. F. Carlucci and D. Pramer, “Factors Affecting the Survival of Bacteria in Sea Water”, Applied Microbiology, vol. 7, no.6, pp. 388-392, 1959. [Google Scholar]
- V. V. Nelson, O. T. Maria, S. V. Mamiè, P. C Maritza, “Microbiologically influenced corrosion in aluminium alloys 7075 and 2024”, Aluminium Alloys-Recent Trends in Processing, Characterization, Mechanical Behavior and Applications, IntechOpen, 2017. [Google Scholar]
- M. Berlanga, R. Guerrero, “Living together in biofilms: the microbial cell factory and its biotechnological implications”, Microbial cell factories, vol. 15, no. 1, pp. 1-11, 2016. [CrossRef] [PubMed] [Google Scholar]
- M. O. Ilori, A. M. Okonkwo, M. Bamidele, “Factors affecting growth of sulfate-reducing bacteria isolated from tropical soil”, Zeitschrift für Naturforschung C, vol. 54 no. 7-8, pp.613-616, 1999. [CrossRef] [Google Scholar]
- K.C. Marshall, “Planktonic Versus Sessile Life of Prokaryotes” in: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, pp. 3-15, 2006. [CrossRef] [Google Scholar]
- A.K. Tripathi, P. Thakur, P. Saxena, S. Rauniyar, V. Gopalakrishnan, R.N. Singh, V. Gadhamshetty, E.Z. Gnimpieba, B.K. Jasthi, R.K. Sani, “Gene sets and mechanisms of sulfate-reducing bacteria biofilm formation and quorum sensing with impact on corrosion”, Frontiers in microbiology, vol. 12, p.754140, 2021. [CrossRef] [PubMed] [Google Scholar]
- M. E. Olson, H. Ceri, D.W. Morck, A.G. Buret, R.R. Read, “Biofilm bacteria: formation and comparative susceptibility to antibiotics”, Canadian journal of veterinary research, vol. 66, no. 2, pp. 86-92, 2002. [Google Scholar]
- E. McCafferty, “Sequence of steps in the pitting of aluminum by chloride ions”, Corrosion science, vol. 45, no. 7, pp. 1421-1438, 2003. [CrossRef] [Google Scholar]
- B. W. Davis, Naval Academy Annapolis MD, “The Influence of Crystal Orientation on the Corrosion Behavior of Aluminum”, US Naval Academy, pp. 1-104, 1997. [Google Scholar]
- I. Handayani, Y. Paisal, S. Soepriyanto, S.K. Chaerun, “Biodesulfurization of organic sulfur in Tondongkura coal from Indonesia by multi-stage bioprocess treatments”, Hydrometallurgy, vol. 168, pp. 84-93, 2017. [CrossRef] [Google Scholar]
- L. Abdoli, J. Huang, H. Li, “Electrochemical corrosion behaviors of aluminum-based marine coatings in the presence of Escherichia coli bacterial biofilm”, Materials Chemistry and Physics, vol. 173, pp. 62-69, 2016. [CrossRef] [Google Scholar]
- S.K. Chaerun, K. Takazaki, M. Okuno, “Monmorillonite mitigates the toxic effect of heavy oil on hydrocarbon-degrading bacterial growth: implications for marine oil spill bioremediation”, Clay Minerals, vol. 48, no. 4, pp. 639-654, 2013. [CrossRef] [Google Scholar]
- E. Sanwani, S.K. Chaerun, “Bioflotation: Bacteria-Mineral Interaction for Ecofriendly and Sustainable Mineral Processing” Procedia Chemistry, vol. 19, pp. 666-672, 2016. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.