Open Access
Issue |
E3S Web Conf.
Volume 543, 2024
International Process Metallurgy Conference (IPMC 2023)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 8 | |
Section | Physical Metallurgy and Corrosion | |
DOI | https://doi.org/10.1051/e3sconf/202454303005 | |
Published online | 03 July 2024 |
- S. Stanković et al., “Options for hydrometallurgical treatment of Ni-Co lateritic ores for sustainable supply of nickel and cobalt for European battery industry from South-Eastern Europe and Turkey”, Metals (Basel), vol. 12, no. 5, p. 807, May 2022, doi: 10.3390/met12050807. [Google Scholar]
- J. Fraser et al., “Study on the future demand and supply security of nickel for electric vehicle batteries”, Luxembourg, Feb. 2021. [Google Scholar]
- Y. Sun, X. Zhu, Y. Han, Y. Li, and P. Gao, “Iron recovery from refractory limonite ore using suspension magnetization roasting: A pilot-scale study”, J Clean Prod, vol. 261, p. 121221, Jul. 2020, doi: 10.1016/j.jclepro.2020.121221. [CrossRef] [Google Scholar]
- C.R.M. Butt and D. Cluzel, “Nickel laterite ore deposits: Weathered serpentinites”, Elements, vol. 9, no. 2, pp. 123-128, Apr. 2013, doi: 10.2113/gselements.9.2.123. [CrossRef] [Google Scholar]
- M. Rao, G. Li, T. Jiang, J. Luo, Y. Zhang, and X. Fan, “Carbothermic reduction of nickeliferous laterite ores for nickel pig iron production in China: A review”, JOM, vol. 65, no. 11, pp. 1573-1583, Nov. 2013, doi: 10.1007/s11837-013-0760-7. [CrossRef] [Google Scholar]
- Y. Zhang et al., “Effects of direct reduction process on the microstructure and reduction characteristics of carbon-bearing nickel laterite ore pellets”, Powder Technol, vol. 376, pp. 496-506, Oct. 2020, doi: 10.1016/j.powtec.2020.08.059. [CrossRef] [Google Scholar]
- Y. Xue et al., “Effective utilization of limonitic nickel laterite via pressurized densification process and its relevant mechanism”, Minerals, vol. 10, no. 9, p. 750, Aug. 2020, doi: 10.3390/min10090750. [CrossRef] [Google Scholar]
- Z. Guo, J. Pan, D. Zhu, and F. Zhang, “Co-reduction of copper smelting slag and nickel laterite to prepare Fe-Ni-Cu alloy for weathering steel”, JOM, vol. 70, no. 2, pp. 150-154, Feb. 2018, doi: 10.1007/s11837-017-2641-y. [CrossRef] [Google Scholar]
- H.K.D.H. Bhadeshia, “A personal commentary on ‘transformation of austenite at constant subcritical temperatures, ’” Metallurgical and Materials Transactions A, vol. 41, no. 6, pp. 1351-1390, Jun. 2010, doi: 10.1007/s11661-010-0250-2. [CrossRef] [Google Scholar]
- J.B. AUSTIN, “EDGAR COLLINS BAIN”, Biographical Memoirs, vol. 50, p. 25, 1978. [Google Scholar]
- H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steels: microstructures and properties. Butterworth-Heinemann, 2017. [Google Scholar]
- H. Matsuda and H.K.D.H. Bhadeshia, “Kinetics of the bainite transformation”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 460, no. 2046, pp. 1707-1722, Jun. 2004, doi: 10.1098/rspa.2003.1225. [CrossRef] [Google Scholar]
- A. Kumar, S.B. Singh, and K.K. Ray, “Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels”, Materials Science and Engineering: A, vol. 474, no. 1-2, pp. 270-282, Feb. 2008, doi: 10.1016/j.msea.2007.05.007. [CrossRef] [Google Scholar]
- A. Eres-Castellanos, L. Morales-Rivas, F.G. Caballero, and C. Garcia-Mateo, “Explaining the dilatometric behavior during bainite transformation under the effect of variant selection”, J Alloys Compd, vol. 864, p. 158130, May 2021, doi: 10.1016/jjallcom.2020.158130. [CrossRef] [Google Scholar]
- L. Morales-Rivas et al., “Crystallographic examination of the interaction between texture evolution, mechanically induced martensitic transformation and twinning in nanostructured bainite”, J Alloys Compd, vol. 752, pp. 505-519, Jul. 2018, doi: 10.1016/jjallcom.2018.04.189. [CrossRef] [Google Scholar]
- A. Eres-Castellanos, L. Morales-Rivas, J.A. Jimenez, F.G. Caballero, and C. Garcia-Mateo, “Effect of ausforming on the macro- and microtexture of bainitic microstructures”, Metallurgical and Materials Transactions A, vol. 52, no. 9, pp. 4033-4052, Sep. 2021, doi: 10.1007/s11661-021-06363-w. [CrossRef] [Google Scholar]
- J. Li, F. Liu, S. Wang, J. Li, Y. Liu, and Q. Meng, “Effect of two-step bainite treatment on the morphology and texture of retained austenite and mechanical properties of austenitizing pretreated transformation-induced plasticity steel”, Materials Science and Engineering: A, vol. 771, p. 138567, Jan. 2020, doi: 10.1016/j.msea.2019.138567. [CrossRef] [Google Scholar]
- S. Kundu, K. Hase, and H.K.D.H. Bhadeshia, “Crystallographic texture of stress-affected bainite”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 2085, pp. 2309-2328, Sep. 2007, doi: 10.1098/rspa.2007.1881. [CrossRef] [Google Scholar]
- S.Z. Shuja, B.S. Yilbas, and S.Z. Shazli, “Laser repetitive pulse heating influence of pulse duty on temperature rise”, Heat and Mass Transfer, vol. 43, no. 9, pp. 949-955, Jul. 2007, doi: 10.1007/s00231-006-0168-9. [CrossRef] [Google Scholar]
- Structural alloys for power plants. Elsevier, 2014. doi: 10.1016/C2013-0-16201-0. [Google Scholar]
- Z. Dai et al., “Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite”, Materials Science and Engineering: R: Reports, vol. 143, p. 100590, Jan. 2021, doi: 10.1016/j.mser.2020.100590. [CrossRef] [Google Scholar]
- M. Soleimani, A. Kalhor, and H. Mirzadeh, “Transformation-induced plasticity (TRIP) in advanced steels: A review”, Materials Science and Engineering: A, vol. 795, p. 140023, Sep. 2020, doi: 10.1016/j.msea.2020.140023. [CrossRef] [Google Scholar]
- S.W. Thompson, D.J. Colvin, and G. Krauss, “Austenite decomposition during continuous cooling of an HSLA-80 plate steel”, Metallurgical and Materials Transactions A, vol. 27, no. 6, pp. 1557-1571, Jun. 1996, doi: 10.1007/BF02649815. [CrossRef] [Google Scholar]
- H.R.K. Zarchi, A. Khajesarvi, S.S.G. Banadkouki, and M.C. Somani, “Microstructural evolution and carbon partitioning in interstitial free weld simulated API 5L X60 steel”, REVIEWS ON ADVANCED MATERIALS SCIENCE, vol. 58, no. 1, pp. 206-217, Nov. 2019, doi: 10.1515/rams-2019-0016. [CrossRef] [Google Scholar]
- M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck, “Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping”, J Mater Process Technol, vol. 211, no. 6, pp. 1117-1125, Jun. 2011, doi: 10.1016/jjmatprotec.2011.01.015. [CrossRef] [Google Scholar]
- S.-I. Lee et al., “Influence of austempering temperature on microstructure and mechanical properties of high-carbon nanostructured bainitic steels”, Materials Science and Engineering: A, vol. 848, p. 143334, Jul. 2022, doi: 10.1016/j.msea.2022.143334. [CrossRef] [Google Scholar]
- L. Stratil, V. Horník, P. Dymáček, P. Roupcová, and J. Svoboda, “The influence of aluminum content on the oxidation resistance of new-generation ODS alloy at 1200 °C”, Metals (Basel), vol. 10, no. 11, p. 1478, Nov. 2020, doi: 10.3390/met10111478. [Google Scholar]
- J.S. Dunning, D.E. Alman, and J.C. Rawers, “Influence of silicon and aluminum additions on the oxidation resistance of lean-chromium stainless steel”, Oxidation of Metals, vol. 57, no. 5/6, pp. 409-425, 2002, doi: 10.1023/A:1015344220073. [CrossRef] [Google Scholar]
- M. Acarer and B. Demir, “An investigation of mechanical and metallurgical properties of explosive welded aluminum-dual phase steel”, Mater Lett, vol. 62, no. 25, pp. 4158-4160, Sep. 2008, doi: 10.1016/j.matlet.2008.05.060. [CrossRef] [Google Scholar]
- R. Guluzade, A. Avci, M. Turan Demirci, and Ö. Faruk Erkendirci, “Fracture toughness of recycled AISI 1040 steel chip reinforced AlMg1SiCu aluminum chip composites”, Materials & Design (1980-2015), vol. 52, pp. 345-352, Dec. 2013, doi: 10.1016/j.matdes.2013.05.025. [CrossRef] [Google Scholar]
- L.H. Shah and M. Ishak, “Review of research progress on aluminum-steel dissimilar welding”, Materials and Manufacturing Processes, vol. 29, no. 8, pp. 928-933, Aug. 2014, doi: 10.1080/10426914.2014.880461. [CrossRef] [Google Scholar]
- M. Khandaei, Y. Vahidshad, and M. Ayaz, “Improvement of weld quality in electromagnetic welding of aluminum-stainless steel sheets”, Materwiss Werksttech, vol. 51, no. 10, pp. 13721388, Oct. 2020, doi: 10.1002/mawe.201900205. [CrossRef] [Google Scholar]
- Y. Sun, S. Hu, Z. Xiao, S. You, J. Zhao, and Y. Lv, “Effects of nickel on low-temperature impact toughness and corrosion resistance of high-ductility ductile iron”, Mater Des, vol. 41, pp. 37-42, Oct. 2012, doi: 10.1016/j.matdes.2012.03.039. [CrossRef] [Google Scholar]
- G.R. Thellaputta, P.S. Chandra, and C.S.P. Rao, “Machinability of nickel-based superalloys: A review”, Mater Today Proc, vol. 4, no. 2, pp. 3712-3721, 2017, doi: 10.1016/j.matpr.2017.02.266. [CrossRef] [Google Scholar]
- T. Sarvar, T. Nodir, and O. Furkat, “Silicon as an alloying element in steels”, Asian Journal Of Multidimensional Research, vol. 11, no. 9, pp. 7174, 2022, doi: 10.5958/2278-4853.2022.00214.2. [Google Scholar]
- Y. Liao, “EDS measurement of carbon: practical electron microscopy and database”, https://www.globalsino.com/EM/page1853.html. [Google Scholar]
- Y. Guo et al., “Microstructure evolution of Fe-based nanostructured bainite coating by laser cladding”, Mater Des, vol. 63, pp. 100-108, Nov. 2014, doi: 10.1016/j.matdes.2014.05.041. [CrossRef] [Google Scholar]
- X. Wu, F. Jiang, Z. Wang, D. Yuan, G. Gao, and C. Guo, “Mechanical behavior and microstructural evolution of a bainite-based quenching-partitioning (BQ&P) steel under high strain rates”, Materials Science and Engineering: A, vol. 818, p. 141414, Jun. 2021, doi: 10.1016/j.msea.2021.141414. [CrossRef] [Google Scholar]
- Z. Lawrynowicz, “Bainitic reaction and microstructure evolution in two normalized and tempered steels designed for service at elevated temperatures”, Advances in Materials Science, vol. 17, no. 4, pp. 22-36, Dec. 2017, doi: 10.1515/adms-2017-0019. [CrossRef] [Google Scholar]
- S.H. He, B.B. He, K.Y. Zhu, and M.X. Huang, “Evolution of dislocation density in bainitic steel: Modeling and experiments”, Acta Mater, vol. 149, pp. 46-56, May 2018, doi: 10.1016/j.actamat.2018.02.023. [CrossRef] [Google Scholar]
- J. Cornide, G. Miyamoto, F.G. Caballero, T. Furuhara, M.K. Miller, and C. García-Mateo, “Distribution of dislocations in nanostructured bainite”, Solid State Phenomena, vol. 172-174, pp. 117-122, Jun. 2011, doi: 10.4028/www.scientific.net/SSP.172-174.117. [CrossRef] [Google Scholar]
- H.-J. Bunge, “Zur darstellung allgemeiner texturen”, International Journal of Materials Research, vol. 56, no. 12, pp. 872-874, Dec. 1965, doi: 10.1515/ijmr-1965-561213. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.