Open Access
Issue |
E3S Web Conf.
Volume 543, 2024
International Process Metallurgy Conference (IPMC 2023)
|
|
---|---|---|
Article Number | 03008 | |
Number of page(s) | 7 | |
Section | Physical Metallurgy and Corrosion | |
DOI | https://doi.org/10.1051/e3sconf/202454303008 | |
Published online | 03 July 2024 |
- G. Dong, Y. Tang, D. Li, and Y. F. Zhao, ‘Design and optimization of solid lattice hybrid structures fabricated by additive manufacturing’, Addit Manuf, 33 (2020) [Google Scholar]
- L. Xiao, X. Xu, G. Feng, S. Li, W. Song, and Z. Jiang, ‘Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures’, Int J Mech Sci, 219 (2022) [Google Scholar]
- R. Goodall and A. Mortensen, ‘Porous Metals’, in Physical Metallurgy: Fifth Edition, 2399-2595 (2014) [CrossRef] [Google Scholar]
- S. Y. Choy, C. N. Sun, K. F. Leong, and J. Wei, ‘Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density’, Addit Manuf, 16, 213-224 (2017) [Google Scholar]
- T. Maconachie et al., ‘SLM lattice structures: Properties, performance, applications and challenges’, Materials and Design, 183 (2019) [Google Scholar]
- A. Nouri and P. D. Hodgson, ‘Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications 415 X Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications’ (2010) [Google Scholar]
- L. Yan, L. P. Zhao, and G.K. O’neill, ‘Dimensional consistency of SLM printed orthopaedic implants designed using lightweight structures’ (2020) [Google Scholar]
- X. Geng, L. Ma, C. Liu, C. Zhao, and Z. F. Yue, ‘A FEM study on mechanical behavior of cellular lattice materials based on combined elements’, Materials Science and Engineering A, 712, 188-198 (2018) [CrossRef] [Google Scholar]
- M. Kaur, T. G. Yun, S. M. Han, E. L. Thomas, and W. S. Kim, ‘3D printed stretching-dominated micro-trusses’, Mater Des, 134, 272-280 (2017) [CrossRef] [Google Scholar]
- B. Lozanovski et al., ‘Computational modelling of strut defects in SLM manufactured lattice structures’, Mater Des, 171 (2019) [Google Scholar]
- J. Banhart, ‘Manufacture, characterisation and application of cellular metals and metal foams’, (2001) [Google Scholar]
- Y. Huang, Y. Xue, X. Wang, and F. Han, ‘Effect of cross sectional shape of struts on the mechanical properties of aluminum based pyramidal lattice structures’, Mater Lett, 202, 55-58 (2017) [CrossRef] [Google Scholar]
- N. Badanova, A. Perveen, and D. Talamona, ‘Study of SLA Printing Parameters Affecting the Dimensional Accuracy of the Pattern and Casting in Rapid Investment Casting’, Journal of Manufacturing and Materials Processing, 6, 5 (2022) [Google Scholar]
- C. K. Chua, C. Feng, C. W. Lee, and G. Q. Ang, ‘Rapid investment casting: Direct and indirect approaches via model maker II’, International Journal of Advanced Manufacturing Technology, 25, 26-32 (2005) [CrossRef] [Google Scholar]
- M. Mukhtarkhanov, A. Perveen, and D. Talamona, ‘Application of stereolithography based 3D printing technology in investment casting’, Micromachines, 11 (2020) [Google Scholar]
- N. Badanova, A. Perveen, and D. Talamona, ‘Concise review on Pattern making process in Rapid Investment Casting: Technology, Materials & Numerical modelling aspect’, Advances in Materials and Processing Technologies, 8, 966-978 (2022) [CrossRef] [Google Scholar]
- X. Xue, C. Lin, F. Wu, Z. Li, and J. Liao, ‘Lattice structures with negative Poisson’s ratio: A review’, Materials Today Communications, 34 (2023) [Google Scholar]
- N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, ‘3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting’, Progress in Materials Science, 106 (2019) [Google Scholar]
- L. Zhang, J. Lifton, Z. Hu, R. Hong, and S. Feih, ‘Influence of geometric defects on the compression behaviour of thin shell lattices fabricated by micro laser powder bed fusion’, Addit Manuf, 58 (2022) [PubMed] [Google Scholar]
- S. Wang et al., ‘Role of porosity defects in metal 3D printing: Formation mechanisms, impacts on properties and mitigation strategies’, Materials Today, 59, 133-160 (2022) [CrossRef] [Google Scholar]
- V. H. Carneiro, S. D. Rawson, H. Puga, J. Meireles, and P. J. Withers, ‘Additive manufacturing assisted investment casting: A low-cost method to fabricate periodic metallic cellular lattices’, Addit Manuf, 33 (2020) [Google Scholar]
- P. Y. Li, Y. E. Ma, W. B. Sun, X. Qian, W. Zhang, and Z. H. Wang, ‘Fracture and failure behavior of additive manufactured Ti6Al4V lattice structures under compressive load’, Eng Fract Mech, 244 (2021) [Google Scholar]
- F. Gallien, V. Gass, and A. Mortensen, ‘Investment casting of periodic aluminum cellular structures using slurry-cast table salt moulds’, Mater Des, 215 (2022) [Google Scholar]
- P. Zhao, D. Huang, Y. Zhang, H. Zhang, and W. Chen, ‘Microstructure and Properties of Hollow Octet Nickel Lattice Materials’, Materials, 15 (2022) [PubMed] [Google Scholar]
- S. E. Alkhatib, A. Karrech, and T. B. Sercombe, ‘Isotropic energy absorption of topology optimized lattice structure’, Thin-Walled Structures, 182 (2023) [Google Scholar]
- J. Noronha et al., ‘Ti-6Al-4V hollow-strut lattice materials by laser powder bed fusion’, Addit Manuf, 72 (2023) [Google Scholar]
- D. Li, R. Qin, J. Xu, J. Zhou, and B. Chen, ‘Topology optimization of thin-walled tubes filled with lattice structures’, Int J Mech Sci, 227 (2022) [Google Scholar]
- A. De Marzi, M. Vibrante, M. Bottin, and G. Franchin, ‘Development of robot assisted hybrid additive manufacturing technology for the freeform fabrication of lattice structures’, Addit Manuf, 66 (2023) [Google Scholar]
- C. T. Richard and T. H. Kwok, ‘Analysis and design of lattice structures for rapid-investment casting’, Materials, 14 (2021) [PubMed] [Google Scholar]
- M. Aramesh and B. Shabani, ‘Metal foam-phase change material composites for thermal energy storage: A review of performance parameters’, Renewable and Sustainable Energy Reviews, vol. 155 (2022) [Google Scholar]
- M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, ‘Metal Foams: A Design Guide Library of Congress Cataloguing-in-Publication Data’ (2000) [Google Scholar]
- G. Costanza, A. Del Ferraro, and M. E. Tata, ‘Experimental Set-Up of the Production Process and Mechanical Characterization of Metal Foams Manufactured by Lost-PLA Technique with Different Cell Morphology’, Metals (Basel), 12 (2022) [Google Scholar]
- P. J. Szabo and I. Kardos, ‘Correlation between grain orientation and the shade of color etching’, Mater Charact, 61, 814-817 (2010) [CrossRef] [Google Scholar]
- J. R. Davis, ‘Metal Handbook Desk Edition’ (1998) [CrossRef] [Google Scholar]
- R. M. Gorguluarslan, ‘Multi-objective design optimization of additively manufactured lattice structures for improved energy absorption performance’, Proc Inst Mech Eng C J Mech Eng Sci, 236, 3-15 (2022) [CrossRef] [Google Scholar]
- W. D. Callister and D. G. Rethwisch, ‘Materials Science and Engineering an Introduction’ (2009) [Google Scholar]
- W. B. Qurix, L. C. Edomwonyi-Otu, J.K. Aremu, G.J. Ibeh, S.G. Bawa, and D. Jise, ‘The application of waste brass cartridges for gamma radiation shields and bullet proofing’, Journal of Materials Research and Technology, 9 (2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.