Open Access
Issue
E3S Web Conf.
Volume 543, 2024
International Process Metallurgy Conference (IPMC 2023)
Article Number 03009
Number of page(s) 12
Section Physical Metallurgy and Corrosion
DOI https://doi.org/10.1051/e3sconf/202454303009
Published online 03 July 2024
  1. R.C. Reed, Roger C., The superalloys : fundamentals and applications, Cambridge University Press, (2006) [CrossRef] [Google Scholar]
  2. E.A. Basuki, D. H. Prajitno, F. Muhammad, Alloys developed for high temperature applications, in proceedings of AIP Conference, American Institute of Physics Inc., (2017) [Google Scholar]
  3. R. Viswanathan, R. Stringer, Failure mechanisms of high temperature components in power plants, (2000) [Google Scholar]
  4. P. Eliott, A practical guide to high-temperature alloys, Mat. And Des. Vol. 12, 6, (1991) [Google Scholar]
  5. M. Simić, A. Alil, S. Martinović, M. Vlahović, A. Savić, T.V. Husović, High temperature materials: properties, demands, and applications, Hem. Ind., 74, 4. Association of Chemists and Chemical Engineers of Serbia, 273-284, (2020) [CrossRef] [Google Scholar]
  6. T. Tsao, Developing new type of high temperature alloys-high entropy superalloys, Int. J. of Metal. & Mater. Eng., 1, 1, (2015) [Google Scholar]
  7. J.B. Wahl, K. Harris, CMSX-4® plus single Crystal alloy development, characterization and application development, in proceedings of the International Symposium on Superalloys, Min. Metal. and Mater. Soc., 25-33, (2016) [Google Scholar]
  8. J.-W. Yeh, Recent progress in high-entropy alloys, Annales de Chimie Science des Matériaux 31, 633-648 (2006) [CrossRef] [Google Scholar]
  9. Y. Zhang, Microstructures and properties of high-entropy alloys, Prog. in Mater. Sci., 61, 1-93, (2014) [CrossRef] [Google Scholar]
  10. L. Zhang, Y. Zhou , X. Jin, X. Du, B. Li, The microstructure and high-temperature properties of novel nano precipitation-hardened face centered cubic high-entropy superalloys. Scr Mater 146, 226-230 (2018) [CrossRef] [Google Scholar]
  11. C.-M. Kuo, C.-W Tsai, Effect of cellular structure on the mechanical property of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy alloy, Mater Chem Phys 210, 103-110 (2018) [CrossRef] [Google Scholar]
  12. Y.-T. Chen, Hierarchical microstructure strengthening in a single crystal high entropy superalloy, Sci Rep 10, 12163 (2020) [CrossRef] [PubMed] [Google Scholar]
  13. T.K. Tsao, The high temperature tensile and creep behaviors of high entropy superalloy, Sci. Rep., 7, 1, (2017) [CrossRef] [Google Scholar]
  14. T. Tsao, Developing New Type of High Temperature Alloys-High Entropy Superalloys, International Journal of Metallurgical & Materials Engineering 1, (2015) [Google Scholar]
  15. Y.T. Chen, Y.J. Chang, H. Murakami, S. Gorsse, A.C. Yeh, Designing high entropy superalloys for elevated temperature application. Scr Mater 187, 177-182 (2020) [CrossRef] [Google Scholar]
  16. M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High-entropy alloys: Fundamentals and Application, (2016) [CrossRef] [Google Scholar]
  17. Y.T. Chen, Y.J. Chang, H. Murakami, S. Gorsse, A.C. Yeh, Designing high entropy superalloys for elevated temperature application, Scr. Mater., 187, 177-182, (2020) [CrossRef] [Google Scholar]
  18. S. El-Hadad, High entropy alloys: the materials of future, Int. J. of Mater. Tech. and Innov., 2, 67-84, (2022) [Google Scholar]
  19. B. Gwalani, Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2, Scr. Mater., 123, 130-134, (2016) [CrossRef] [Google Scholar]
  20. I.S. Wani, Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy, Intermetal. (Barking), 84, 42-51, (2017) [CrossRef] [Google Scholar]
  21. L. Huang, Effect of Cu segregation on the phase transformation and properties of AlCrFeNiTiCux high-entropy alloys, Intermetallics 140, 107397 (2022) [CrossRef] [Google Scholar]
  22. W. Qi, Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZr high-entropy alloy, J Mater Sci Technol 109, 76-85 (2022) [CrossRef] [Google Scholar]
  23. S. Brito-Garcia, J. Mirza-Rosca, V. Geanta, I. Voiculescu, Mechanical and corrosion behavior of Zr-doped high-entropy alloy from CoCrFeMoNi System, Mater., 16, 5, (2023) [Google Scholar]
  24. C. Tian, G. Han, C. Cui, X. Sun, Effects of stacking fault energy on the creep behaviors of Ni-base superalloy, Mater Des 64, 316-323 (2014) [CrossRef] [Google Scholar]
  25. T.L. Achmad, W. Fu, H. Chen, C. Zhang, Z.-G. Yang, First-principles calculations of generalized-stacking-fault-energy of Co-based alloys, Comput Mater Sci 121, 86-96 (2016) [CrossRef] [Google Scholar]
  26. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP, Z. Kristallogr., 220, 567-570, (2005) [CrossRef] [Google Scholar]
  27. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. 77, 18, (1996) [Google Scholar]
  28. X. Li, X. Chen, L. Han, C. Ruan, P. Lu, P. Guan, First-principles study of the structural, elastic and electronic properties of Pt3M alloys, J. Mater. Res., 31, (2016) [Google Scholar]
  29. F. Birch, Finite elastic strain of cubic crystal, Phys. Rev., 71, 809, (1947) [CrossRef] [Google Scholar]
  30. Wen, D., M.S. Titus, First-principles study of suzuki segregation at stacking faults in disordered face-centered cubic Co-Ni alloys, Act. Materia. (2021) [Google Scholar]
  31. F. Liang, J. Du, G. Su, C. Xu, C. Zhang, X. Kong, Phase stability and mechanical properties analysis of AlCoxCrFeNi HEAs based on first principles, Metals (Basel), 12, (2022) [Google Scholar]
  32. A. Fourmont, et al. Effects of mechanical activation on chemical homogeneity and contamination level in dual-phase AlCoCrFeNi high entropy alloy, Mater. Chem. Phys., 272, (2021) [Google Scholar]
  33. T. Borkar, A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties, Acta Mater 116, 63-76 (2016) [CrossRef] [Google Scholar]
  34. T. Vlasák, et al., Thermal stability of microstructure of high-entropy alloys based on refractory metals Hf, Nb, Ta, Ti, V, and Zr, Metals (Basel), 12, (2022) [Google Scholar]
  35. H.M. Ledbetter, R.P. Reed, Elastic properties of metals and alloys, I. iron, nickel, and iron-nickel alloys, J. Phys. Chem. Ref. Data., 2, 531-618, (1973) [CrossRef] [Google Scholar]
  36. M. Born, On the stability of crystal lattices I, Mathematical Proceedings of the Cambridge Philosophical Society, 36, 160-172, (1940) [CrossRef] [Google Scholar]
  37. X. Zuo, N. Moelans, Phase-field study of elastic effects on precipitate evolution in (Al)0.05CrFeNi, Int J Mech Sci 247, 108163 (2023) [CrossRef] [Google Scholar]
  38. T. Xiong, et al., Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2. 1, J. Mater. Sci. Technol, 65, 16-227, (2021) [Google Scholar]
  39. H. Liu, C. Xin, L. Liu, C. Zhuang, Effects of different contents of each component on the structural stability and mechanical properties of Co-Cr-Fe-Ni high-entropy alloys, App. Sci. (Switzerland), 11, (2021) [Google Scholar]
  40. G. Ji, et al., Effect of Zr addition on the local structure and mechanical properties of Ti-Ta-Nb-Zr refractory high-entropy alloys, J. Mat. Res.Techno., 19, 4428-4438, (2022) [CrossRef] [Google Scholar]
  41. H. Zhang, L. Zhang, X. Liu, Q. Chen, Y. Xu, Effect of Zr addition on the microstructure and mechanical Properties of CoCrFeNiMn high-entropy Alloy synthesized by spark plasma sintering, Entropy, 20, (2018) [Google Scholar]
  42. X. Wang, et al., Effects of Al and La elements on mechanical properties of CoNiFe0.6Cr0.6 high-entropy alloys: a first-principles study, Journal of Materials Research and Technology 23, 1130-1140 (2023) [CrossRef] [Google Scholar]
  43. M. L. Liu, et al., Ductilizing Ti19Zr19Hf19Nb19TM5Be19 (TM = Fe, Co, Ni and Cu) high-entropy bulk metallic glass composites via in-situ precipitated refractory high-entropy alloy dendrites, Intermetallics (Barking) 152, 107755 (2023) [CrossRef] [Google Scholar]
  44. M. Murthado, Desain paduan entropi tinggi CoCrNiFeAl dan CoCrNiFeSi dengan Metode Perhitungan Termodinamika dan Simulasi First Principles, (2022) [Google Scholar]
  45. Peng, X. et al. Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: Effect of Cu addition. Mater Des 45, 518-523 (2013). [CrossRef] [Google Scholar]
  46. H. Song, et al., Local lattice distortion in high-entropy alloys, Phys. Rev. Mater., 1, (2017) [Google Scholar]
  47. D. Wen, M.S. Titus, Electronic origin of Suzuki segregation of transition metal elements in face-centered cubic Co and Ni alloys, Comput Mater Sci 220, 112033 (2023) [CrossRef] [Google Scholar]
  48. P. Cui, W. Wang, Z. Nong, Z. Lai, Y. Liu, J. Zhu, Effects of Cr content on microstructure and mechanical properties of Co-free FeCryNiAl0.8 high-entropy alloys, Mater., 16, 3348, (2023) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.