Open Access
Issue |
E3S Web Conf.
Volume 543, 2024
International Process Metallurgy Conference (IPMC 2023)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 10 | |
Section | Physical Metallurgy and Corrosion | |
DOI | https://doi.org/10.1051/e3sconf/202454303010 | |
Published online | 03 July 2024 |
- A.P. Mouritz, Superalloys for gas turbine engines Introduction to Aerospace Materials, Woodhead Publishing: Cambridge, (2012) [Google Scholar]
- C. T. Sims, N. S. Stoloff, and W. C. Hagel, superalloys II vol. 8, Wiley New York, (1987). [Google Scholar]
- R.C. Reed, Roger C., The superalloys : fundamentals and applications, Cambridge University Press, (2006) [CrossRef] [Google Scholar]
- S. Chen, Q. Li, J. Zhong, F. Xing, and L. Zhang, On diffusion behaviors in face centered cubic phase of Al-Co-Cr-Fe-Ni-Ti high-entropy superalloys, J Alloys Compd, 791, 255-264, (2019) [CrossRef] [Google Scholar]
- Y.-T. Chen, Y.-J. Chang, H. Murakami, S. Gorsse, A.-C. Yeh, Designing high entropy superalloys for elevated temperature application, Scr Mater, 187, 177-182, (2020). [CrossRef] [Google Scholar]
- E. P. George, D. Raabe, R. O. Ritchie, High-entropy alloys, Nat Rev Mater, 4, no. 8, 515-534, (2019) [CrossRef] [Google Scholar]
- D. Miracle, J. Miller, O. Senkov, C. Woodward, M. Uchic, J. Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy, vol. 16, no. 1, pp. 494-525, (2014) [CrossRef] [Google Scholar]
- J.-W. Yeh et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv Eng Mater, vol. 6, no. 5, pp. 299-303, (2004) [CrossRef] [Google Scholar]
- D. B. Miracle, O. N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater, vol. 122, pp. 448-511, (2017) [CrossRef] [Google Scholar]
- Y. Yin et al., High-temperature age-hardening of a novel cost-effective Fe45Ni25Cr25Mo5 high entropy alloy, Materials Science and Engineering: A, vol. 788, p. 139580, (2020) [CrossRef] [Google Scholar]
- S. Li et al., Cost-efficient copper-nickel alloy for active cooling applications, Int J Heat Mass Transf, vol. 195, p. 123181, (2022) [CrossRef] [Google Scholar]
- W. D. Wong-Ángel, L. Téllez-Jurado, J.F. Chávez-Alcalá, E. Chavira-Martínez, V.F. Verduzco-Cedeño, Effect of copper on the mechanical properties of alloys formed by powder metallurgy, Mater Des, vol. 58, pp. 12-18, (2014) [CrossRef] [Google Scholar]
- L. Huang, Effect of Cu segregation on the phase transformation and properties of AlCrFeNiTiCux high-entropy alloys, Intermetallics 140, 107397 (2022) [CrossRef] [Google Scholar]
- B. Li, E. J. Lavernia, Y. Lin, F. Chen, L. Zhang, Spray Forming of MMCs in Reference Module in Materials Science and Materials Engineering, Elsevier, (2016) [Google Scholar]
- ASM International, ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2. (2002) [Google Scholar]
- P. J. Ferreira, P. Müllner, A thermodynamic model for the stacking-fault energy, Acta Mater, vol. 46, no. 13, pp. 4479-4484, (1998) [CrossRef] [Google Scholar]
- T. L. Achmad, W. Fu, H. Chen, C. Zhang, Z.-G. Yang, Effects of alloying elements concentrations and temperatures on the stacking fault energies of Co-based alloys by computational thermodynamic approach and first-principles calculations, J Alloys Compd, vol. 694, pp. 1265-1279, (2017) [CrossRef] [Google Scholar]
- A. Van De Walle M. Asta, High-throughput calculations in the context of alloy design, MRS Bull, vol. 44, no. 4, pp. 252-256, (2019) [CrossRef] [Google Scholar]
- T. Borkar, A combinatorial assessment of AlxCrCuFeNi2 complex concentrated alloys: Microstructure, microhardness, and magnetic properties, Acta Mater 116, 63-76 (2016) [CrossRef] [Google Scholar]
- H. Gholizadeh, The Influence of Alloying and Temperature on the Stacking-fault Energy of Iron-based Alloys, Montanuniversität Leoben, (2013) [Google Scholar]
- Y. H. Zhang, Y. Zhuang, A. Hu, J.-J. Kai, and C. T. Liu, “The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys,” Scr Mater, vol. 130, pp. 96-99, (2017). [CrossRef] [Google Scholar]
- F. Zhang et al., Polymorphism in a high-entropy alloy, Nat Commun, vol. 8, no. 1, p. 15687, (2017) [CrossRef] [PubMed] [Google Scholar]
- Z. Y. Wang, D. Han, X. W. Li, Competitive effect of stacking fault energy and short-range clustering on the plastic deformation behavior of Cu-Ni alloys, Materials Science and Engineering: A, vol. 679, pp. 484-492, (2017) [CrossRef] [Google Scholar]
- J.-Q. Zhao, H. Tian, Z. Wang, X.-J. Wang, J.-W. Qiao, FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys, Acta Metallurgica Sinica (English Letters), vol. 33, no. 8, pp. 1151-1158, (2020) [CrossRef] [Google Scholar]
- A. Dumay, J.-P. Chateau, S. Allain, S. Migot, O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel, Materials Science and Engineering: A, vol. 483-484, pp. 184-187, (2008) [CrossRef] [Google Scholar]
- J. Yan et al., Plastic deformation mechanism of CoCrxNi medium entropy alloys, Materials Science and Engineering: A, vol. 814, p. 141181, (2021) [CrossRef] [Google Scholar]
- K.-T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Choi, C. S. Lee, Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition, Materials Science and Engineering: A, vol. 527, no. 16-17, pp. 3651-3661, (2010) [CrossRef] [Google Scholar]
- X. Sun, H. Zhang, W. Li, X. Ding, Y. Wang, L. Vitos, Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy, Nanomaterials, vol. 10, no. 1, p. 59, (2019) [CrossRef] [PubMed] [Google Scholar]
- L. Huang, X. Wang, B. Huang, X. Zhao, H. Chen, C. Wang, Effect of Cu segregation on the phase transformation and properties of AlCrFeNiTiCux high-entropy alloys, Intermetallics (Barking), vol. 140, p. 107397, (2022) [CrossRef] [Google Scholar]
- C. Wang, S. Schönecker, W. Li, Y. Yang, Q.-M. Hu, L. Vitos, Twinning pathways in Fe and Fe-Cr alloys from first-principles theory, Acta Mater, vol. 215, p. 117094, (2021). [CrossRef] [Google Scholar]
- A. Zamani, Pemodelan Stacking Fault Energy Dengan Metode Komputasi Untuk Desain Paduan Entropi Sedang CoCrNiAl dan FeCrNiAl pada Aplikasi Biomedis, (2021). [Google Scholar]
- A. C. Yeh et al., Developing new type of high temperature alloys-high entropy superalloys, Int. J. Metall. Mater. Eng, vol. 1, no. 107, pp. 1-4, (2015) [Google Scholar]
- J. X. Zhang, J. C. Wang, H. Harada, Y. Koizumi, The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep, Acta Mater, vol. 53, no. 17, pp. 4623-4633, (2005) [CrossRef] [Google Scholar]
- T.-K. Tsao et al., The high temperature tensile and creep behaviors of high entropy superalloy,” Sci Rep, vol. 7, no. 1, p. 12658, (2017) [CrossRef] [PubMed] [Google Scholar]
- T.-K. Tsao, A.-C. Yeh, The thermal stability and strength of highly alloyed Ni3Al, Mater Trans, vol. 56, no. 11, pp. 1905-1910, (2015) [CrossRef] [Google Scholar]
- F. R. N. Nabarro, F. L. de Villiers, Physics of creep and creep-resistant alloys, CRC press, (1995) [Google Scholar]
- N. Chaudhary, A. Abu-Odeh, I. Karaman, R. Arróyave, A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels, J Mater Sci, vol. 52, pp. 11048-11076, (2017) [CrossRef] [Google Scholar]
- T.L Achmad, Development of Stacking Fault Energy (SFE) Modelling of Co-based Alloys for Alloy Design, Tsinghua University, (2018) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.