Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 01011
Number of page(s) 8
Section Experimental Investigations From Very Small Strains to Beyond Failure - Advances in Laboratory Testing Techniques (Equipment and Procedures)
DOI https://doi.org/10.1051/e3sconf/202454401011
Published online 02 July 2024
  1. ASTM International, 2017. ASTM D6913/D6913M – 17 Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. [Google Scholar]
  2. ASTM International, 2016a. D4254 - Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. [Google Scholar]
  3. ASTM International, 2016b. D4253 - Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. [Google Scholar]
  4. ASTM International, 2014a. D4015 - Standard Test Methods for Modulus and Damping of Soils by Resonant-Column. [Google Scholar]
  5. ASTM International, 2014b. D854 - Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. [Google Scholar]
  6. Astuto, G., Molina-Gomez, F., Bilotta, E., Viana da Fonseca, A., Flora, A., 2023. Some remarks on the assessment of Pwave velocity in laboratory tests for evaluating the degree of saturation. Acta Geotech. 18, 777–790. https://doi.org/10.1007/s11440-022-01610-9 [CrossRef] [Google Scholar]
  7. Azevedo, J., Guerreiro, L., Bento, R., Lopes, M., Proenca, J., 2010. Seismic vulnerability of lifelines in the greater Lisbon area. Bull. Earthq. Eng. 8, 157–180. https://doi.org/10.1007/s10518-009-9124-7 [CrossRef] [Google Scholar]
  8. Biot, M.A., 1956. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid II. Higher Frequency Range. J. Acoust. Soc. Am. 28, 179–191. https://doi.org/10.1121/1.1908241 [CrossRef] [Google Scholar]
  9. Camacho-Tauta, J., 2011. Evaluation of the small-strain stiffness of soil by non-conventional dynamic testing methods. Universidade de Lisboa. [Google Scholar]
  10. Camacho-Tauta, J., Cascante, G., Viana da Fonseca, A., Santos, J.A., 2015. Time and frequency domain evaluation of bender element systems. Geotechnique 65, 548–562. https://doi.org/10.1680/geot.13.P.206 [CrossRef] [Google Scholar]
  11. Dyvik, R., Madshus, C., 1985. Lab Measurements of Gmax Using Bender Elements, in: Advances in the Art of Testing Soils Under Cyclic Conditions. ASCE. [Google Scholar]
  12. Eseller-Bayat, E., Gokyer, S., Yegian, M.K., Deniz, R.O., Alshawabkeh, A., 2013. Bender Elements and Bending Disks for Measurement of Shear and Compression Wave Velocities in Large Fully and Partially Saturated Sand Specimens. Geotech. Test. J. 36, 20120024. https://doi.org/10.1520/GTJ20120024 [Google Scholar]
  13. Ferreira, C., Viana da Fonseca, A., Ramos, C., Saldanha, A.S., Amoroso, S., Rodrigues, C., 2020. Comparative analysis of liquefaction susceptibility assessment methods based on the investigation on a pilot site in the greater Lisbon area. Bull. Earthq. Eng. 18, 109–138. https://doi.org/10.1007/s10518-019-00721-1 [CrossRef] [Google Scholar]
  14. Ferreira, C., Viana da Fonseca, A., Santos, J.A., 2007. Comparison of Simultaneous Bender Elements and Resonant Column Tests on Porto Residual Soil. pp. 523–535. https://doi.org/10.1007/978-1-4020-6146-2_34 [Google Scholar]
  15. Irfan, M., Cascante, G., Basu, D., Khan, Z., 2020. Novel evaluation of bender element transmitter response in transparent soil. Geotechnique 70, 187–198. https://doi.org/10.1680/jgeot.17.P.256 [CrossRef] [Google Scholar]
  16. Ishihara, K., 1996. Soil Behaviour in Earthquake Geotechnics, 1st ed. Clarendon Press, Oxford. [Google Scholar]
  17. Khan, Z., El Naggar, M.H., Cascante, G., 2011. Frequency dependent dynamic properties from resonant column and cyclic triaxial tests. J. Franklin Inst. 348, 1363–1376. https://doi.org/10.1016/J.JFRANKLIN.2010.04.003 [CrossRef] [Google Scholar]
  18. Lai, C.G., Bozzoni, F., Conca, D., Fama, A., Ozcebe, A.G., Zuccolo, E., Meisina, C., Boni, R., Bordoni, M., Cosentini, R.M., Martelli, L., Poggi, V., Viana da Fonseca, A., Ferreira, C., Rios, S., Cordeiro, D., Ramos, C., Molina-Gomez, F., Coelho, C., Logar, J., Maček, M., Oblak, A., Ozcep, F., Bozbey, I., Oztoprak, S., Sargin, S., Aysal, N., Oser, C., Kelesoglu, M.K., 2020. Technical guidelines for the assessment of earthquake induced liquefaction hazard at urban scale. Bull. Earthq. Eng. 1–45. https://doi.org/10.1007/s10518-020-00951-8 [Google Scholar]
  19. Lee, J.-S., Santamarina, J.C., 2005. Bender Elements: Performance and Signal Interpretation. J. Geotech. Geoenvironmental Eng. 131, 1063–1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063) [CrossRef] [Google Scholar]
  20. Liu, X., Yang, J., 2018. Shear wave velocity in sand: effect of grain shape. Geotechnique 68, 742–748. https://doi.org/10.1680/jgeot.17.T.011 [CrossRef] [Google Scholar]
  21. Lo Presti, D.C.F., Jamiolkowski, M., Pallara, O., Cavallaro, A., Pedroni, S., 1997. Shear modulus and damping of soils. Geotechnique 47, 603–617. https://doi.org/10.1680/geot.1997.47.3.603 [CrossRef] [Google Scholar]
  22. Molina-Gomez, F., Viana da Fonseca, A., 2021. Key geomechanical properties of the historically liquefiable TPLisbon sand. Soils Found. 61, 836–856. https://doi.org/10.1016/j.sandf.2021.03.004 [CrossRef] [Google Scholar]
  23. Molina-Gomez, F., Viana da Fonseca, A., Ferreira, C., Camacho-Tauta, J., 2020. Dynamic properties of two historically liquefiable sands in the Lisbon area. Soil Dyn. Earthq. Eng. 132, 106101. https://doi.org/10.1016/j.soildyn.2020.106101 [CrossRef] [Google Scholar]
  24. Oliveira, C.S., 2008. Review of the 1755 Lisbon Earthquake Based on Recent Analyses of Historical Observations, in: Frechet, J., Meghraoui, M., Stucchi, M. (Eds.), Historical Seismology: Interdisciplinary Studies of Past and Recent Earthquakes. Springer, pp. 261–300. https://doi.org/10.1007/978-1-4020-8222-1_13 [Google Scholar]
  25. Ramos, C., Ferreira, C., Molina-Gomez, F., Viana da Fonseca, A., 2019. Critical State Lines of Portuguese liquefiable sands. E3S Web Conf. 92, 06003. https://doi.org/10.1051/e3sconf/20199206003 [CrossRef] [EDP Sciences] [Google Scholar]
  26. Rio, J.F., 2006. Advances in laboratory geophysics using bender elements. University College of London. [Google Scholar]
  27. Robertson, P.K., 2009. Interpretation of cone penetration tests -a unified approach. Can. Geotech. J. 46, 1337–1355. https://doi.org/10.1139/T09-065 [CrossRef] [Google Scholar]
  28. Santos, J.A., 1999. Soil characterization by dynamic and cyclic torsional shear test. Application to study of piles under static and dynamic horizontal loading (in portuguese). Universidade de Lisboa. [Google Scholar]
  29. Suits, L.D., Sheahan, T.C., Kim, N.-R., Kim, D.-S., 2010. A Shear Wave Velocity Tomography System for Geotechnical Centrifuge Testing. Geotech. Test. J. 33, 102894. https://doi.org/10.1520/GTJ102894 [Google Scholar]
  30. Valle-Molina, C., Stokoe, K.H., 2012. Seismic measurements in sand specimens with varying degrees of saturation using piezoelectric transducers. Can. Geotech. J. 49, 671–685. https://doi.org/10.1139/t2012-033 [CrossRef] [Google Scholar]
  31. Verdugo, R., Ishihara, K., 1996. The Steady State of Sandy Soils. Soils Found. 36, 81–91. https://doi.org/10.3208/sandf.36.2_81 [CrossRef] [Google Scholar]
  32. Viana da Fonseca, A., Cordeiro, D., Molina-Gomez, F., 2021. Recommended Procedures to Assess Critical State Locus from Triaxial Tests in Cohesionless Remoulded Samples. Geotechnics 1, 95–127. https://doi.org/10.3390/GEOTECHNICS1010006 [CrossRef] [Google Scholar]
  33. Viana da Fonseca, A., Ferreira, C., Fahey, M., 2009. A Framework Interpreting Bender Element Tests, Combining Time-Domain and Frequency-Domain Methods. Geotech. Test. J. 32, 100974. https://doi.org/10.1520/GTJ100974 [Google Scholar]
  34. Viana da Fonseca, A., Molina-Gomez, F., Ferreira, C., 2023. Liquefaction resistance of TP-Lisbon sand: a critical state interpretation using in situ and laboratory testing. Bull. Earthq. Eng. 21, 767–790. https://doi.org/10.1007/s10518-022-01577-8 [CrossRef] [Google Scholar]
  35. Viggiani, G., Atkinson, J.H., 1995. Interpretation of bender element tests. Geotechnique 45, 149–154. https://doi.org/10.1680/geot.1997.47.4.873 [CrossRef] [Google Scholar]
  36. Vucetic, M., 1994. Cyclic Threshold Shear Strains in Soils. J. Geotech. Eng. 120, 2208–2228. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2208) [CrossRef] [Google Scholar]
  37. Yamashita, S., Kawaguchi, T., Nakata, Y., Mikamt, T.,Fujiwara, T., Shibuya, S., 2009. Interpretation of international parallel test on the measurement of G max using bender elements. Soils Found. 49, 631–650. https://doi.org/10.3208/sandf.49.631 [Google Scholar]
  38. Zhao, Y., Mahmood, N.S., Coffman, R.A., 2019. Small-Strain and Large-Strain Modulus Measurements with a Consolidation Device. J. Test. Eval. 47, 20160331. https://doi.org/10.1520/JTE20160331 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.