Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 01032
Number of page(s) 7
Section Experimental Investigations From Very Small Strains to Beyond Failure - Advances in Laboratory Testing Techniques (Equipment and Procedures)
DOI https://doi.org/10.1051/e3sconf/202454401032
Published online 02 July 2024
  1. Al-Thawad, S. Ureolytic Bacteria and Calcium Carbonate Formation as a Mechanism of Strength Enhancement of Sand, Journal of Adv. Sc. and Eng. Research 1, pp. 98–114, 2011, https://www.researchgate.net/publication/230603500 [Google Scholar]
  2. Cardoso, R., Vieira, J. and Borges, I. (2023). On the use of Biocementation to treat collapsible soils. Engineering Geology, 313, 106971, https://doi.org/10.1016/j.enggeo.2022.106971 [CrossRef] [Google Scholar]
  3. Chen, J., Shi, Q., Zhang, W. Structural path and sensitivity analysis of the CO2 emissions in the construction industry, Environmental Impact Assessment, Volume 92, pp. 1 – 2, 2022, https://doi.org/10.1016/j.eiar.2021.106679 [Google Scholar]
  4. DeJong, J. T., Mortensen, B. M., Martinez, B. C., Nelson, D. C., Bio-mediated soil improvement, Ecological Eng., Volume 36, pp. 197–210, 2010, https://doi.org/10.1016/j.ecoleng.2008.12.029 [CrossRef] [Google Scholar]
  5. Harkes, M., Van Paassen, L., Booster, J., Whiffin, V., Loosdrecht, C. M. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement, Ecological Eng., Volume 36, pp. 112–117, 2009, doi:10.1016/j.ecoleng.2009.01.004 [Google Scholar]
  6. Ivanov, V., Chu, J., Stabnikov, V. Basics of construction microbial biotechnology, In: Biotechnologies and Biomimetics for Civil Engineering, 1st ed., Springer Cham, Switzerland, 2015, pp. 21–56, https://doi.org/10.1007/978-3-319-09287-4 [Google Scholar]
  7. Mountassir, G., Lunn, R., Moir, H., Maclachlan, E. Hydrodynamic Coupling in Microbially Mediated Fracture Mineralization: Formation of Self-Organized Groundwater flow channels. Water Resources Research, Volume 50, pp. 1–16, 2014, https://doi.org/10.1002/2013WR013578 [Google Scholar]
  8. Pattanayak, P., Kumar Singh, S., Gulati, M., Vishwas, S., Kapoor, B., Chellappan, D. K., Anand, K., Gupta, G., Jha, N.K., Gupta, P. K., Prasher, P., Dua, K., Dureja, H., Kumar, D., Kumar, V. Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives, Microfluidics and Nanofluidics, pp. 1 - 28, 2021, https://doi.org/10.1007/s10404-021-02502-2. [Google Scholar]
  9. Phillips, A., Gerlach, R, Lauchnor, E, Mitchell, A., Cunningham, A., Spangler, L. Engineered applications of ureolytic biomineralization: A review, Biofouling, Volume 29, pp. 715–733, 2013, https://doi.org/10.1080/08927014.2013.796550 [Google Scholar]
  10. Rodríguez, R., Cardoso, R. Study of biocementation treatment to prevent erosion by concentrated water flow in a smallscale sand slope, Transportation Geotechnics, Volume 37, 2022. https://doi.org/10.1016/j.trgeo.2022.100873. [Google Scholar]
  11. Shu, S., Shuang, Chen H., Meng, H. (2022). Modelling Microbially Induced Carbonate Precipitation (MICP) in Microfluidic Porous Chips. Hindawi Geofluids, pp. 1 – 8, Volume 2022, https://doi.org/10.1155/2022/3616473. [Google Scholar]
  12. Siddique, R., and N. K. Chahal. Effect of ureolytic bacteria on concrete properties, Construction and Building Materials, Volume.25, pp. 3791–3801, 2011, https://doi.org/10.1016/j.conbuildmat.2011.04.010 [Google Scholar]
  13. Stocks-Fischer, S.; Galinat, J. K.; Bang, S. Microbiological precipitation of CaCO3, Soil Biol. Biochem., Volume 31, pp. 1563–1571, 1999, https://doi.org/10.1016/S0038-0717(99)00082-6 [CrossRef] [Google Scholar]
  14. United Nations Environment Programme (2020). Global Status Report for Buildings and Construction: Towards a Zeroemission, Efficient and Resilient Buildings and Construction Sector. Nairobi [Google Scholar]
  15. Van Paassen, L., Ghose, R., Linden T., Van der Star W., Loosdrecht, M. Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment, Journal of Geotech. and Geoenv. Eng., Volume 136, 1721–1728, pp. 1721–1728, 2010, 10.1061/(ASCE)GT.1943–5606.0000382 [Google Scholar]
  16. Wang, Y., Soga, K., DeJong, J T., Kabla, A. Microscale Visualization of Microbial-Induced Calcium Carbonate Precipitation Processes, J. of Geotech. and Geoenv. Eng, 04019045, 145(9), 2019, DOI: 10.1061/(ASCE)GT.1943-5606.0002079 [Google Scholar]
  17. Wang, Y., Soga, K., Dejong, J T., Kabla, A., A Microfluidic Chip and its use in Characterising the Particle-Scale Behaviour of Microbial-Induced Calcium Carbonate Precipitation (MICP), Geotechnique, Volume 69, pp. 1086–1094, 2019, https://doi.org/10.1680/jgeot.18.P.031 [CrossRef] [Google Scholar]
  18. Whiffin, V. S. Microbial CaCO3 Precipitation for the Production of Biocement. PhD thesis Philosophy in Biotechnology. Murdoch University, Western Australia, 2004: https://researchrepository.murdoch.edu.au/id/eprint/399/2/02Whole.pdf [Accessed: april 2022] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.