Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 01034
Number of page(s) 7
Section Experimental Investigations From Very Small Strains to Beyond Failure - Advances in Laboratory Testing Techniques (Equipment and Procedures)
DOI https://doi.org/10.1051/e3sconf/202454401034
Published online 02 July 2024
  1. Ahmed, S. & Martinez, A., 2020. Modeling the mechanical behavior of coarse-grained soil using additive manufactured particle analogs. Acta Geotechnica, 15(10), pp. 2829–2847, https://doi.org/10.1007/s11440-020-01007-6. [CrossRef] [Google Scholar]
  2. Amurane, I., Zhang, M., Li, T. & Jiang, H., 2019. Optimization of 3D printed geocells based on numerical simulation and experimental investigation. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, https://iopscience.iop.org/article/10.1088/1755–1315/233/3/032043/meta [Google Scholar]
  3. ASTM D790-17 (2017) Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, DOI:https://www.astm.org/d0790-17.html [Google Scholar]
  4. Chen, X., Zhang, J., Xiao, Y. & Li, J., 2015. Effect of roughness on shear behavior of red clay – concrete interface in largescale direct shear tests. Canadian Geotechnical Journal, 52(8), https://doi.org/10.1139/cgj-2014-0399 [Google Scholar]
  5. DeJong, J. T., Randolph, M. F. & White, D. J., 2003. Interface Load Transfer Degradation During Cyclic Loading: A Microscale Investigation. Soils and Foundations, 43(4), pp. 81–93, https://doi.org/10.3208/sandf.43.4_81 [CrossRef] [Google Scholar]
  6. Di Donna, A., Ferrari, A. & Laloui, L., 2016. Experimental investigations of the soil–concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures. Canadian Geotechnical Journal, 53(4), pp. 659–672, https://doi.org/10.1139/cgj-2015-0294@cgjwgge.issue01 [CrossRef] [Google Scholar]
  7. Ding, X., Luo, Z. & Ou, Q., 2022. Mechanical property and deformation behavior of geogrid reinforced calcareous sand. Geotextiles and Geomembranes, 50(4), pp. 618–631, https://doi.org/10.1016/j.geotexmem.2022.03.002 [CrossRef] [Google Scholar]
  8. Dionysios, S., Wang, J. & Ling, H. I., 2017. Model geogrids and 3D printing. Geotextiles and Geomembranes, 45(6), pp. 688–696,https://doi.org/10.1016/j.geotexmem.2017.07.006 [CrossRef] [Google Scholar]
  9. Dixon, N., Jones, D. & Fowmes, G., 2006. Interface shear strength variability and its use in reliability-based landfill stability analysis. Geosynthetics International, 13(1), pp. 1–14, https://doi.org/10.1680/gein.2006.13.1.1 [CrossRef] [Google Scholar]
  10. Du, Y. et al., 2022. Study on the Anisotropic Shear Strength of Rough Joint via 3D Scanning, 3D Printing, and 3D Discrete-Element Modelling. International Journal of Geomechanics, 22(6), https://doi.org/10.1680/gein.2006.13.1.1 [Google Scholar]
  11. Fadaie, S., Mehravar, M., Webb, D. J. & Zhang, W., 2022. Nearshore Contamination Monitoring in Sandy Soils Using Polymer Optical Fibre Bragg Grating Sensing Systems. Sensors, 22(14), https://doi.org/10.3390/s22145213 [Google Scholar]
  12. Fadaie, S. & Veiskarami, M., 2020. Bearing Capacity Failure of Supported Cuts in the Presence of Seepage Flow by Coupled Finite Elements and Stress Characteristics Method. International Journal of Civil Engineering, Volume 18, p. 817–825, https://doi.org/10.1007/s40999-020-00495-7 [CrossRef] [Google Scholar]
  13. Fang, R. et al., 2023. Effect of concrete surface roughness on shear strength of frozen soil–concrete interface based on 3D printing technology. Construction and Building Materials, Volume 366, https://doi.org/10.1016/j.conbuildmat.2022.130158 [Google Scholar]
  14. Fowmes, G., Dixon, N., Fu, L. & Zaharescu, C., 2017. Rapid prototyping of geosynthetic interfaces: investigation of peak strength using direct shear tests. Geotextiles and Geomembranes, 45(6), pp. 674–687, https://doi.org/10.1016/j.geotexmem.2017.08.009 [CrossRef] [Google Scholar]
  15. Gao, J., Yang, Y., Zhang, H. & Xie, Z., 2022. Effect of different forms on geogrid tensile properties based on 3D printing technology. Journal of Thermoplastic Composite Materials, https://doi.org/10.1177/08927057221123474 [Google Scholar]
  16. Huang, M. et al., 2023. Method for visualizing the shear process of rock joints using 3D laser scanning and 3D printing techniques. Journal of Rock Mechanics and Geotechnical Engineering, 15(1), pp. 204–215, https://doi.org/10.1016/j.jrmge.2022.02.013 [CrossRef] [Google Scholar]
  17. Hu, L. & Pu, J., 2004. Testing and Modeling of Soil-Structure Interface. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(851) [Google Scholar]
  18. Jaber, J. et al., 2020. Investigation of the Mechanical Behavior of 3D Printed Polyamide-12 Joints for Reduced Scale Models of Rock Mass. Rock Mechanics and Rock Engineering, Volume 53, https://doi.org/10.1007/s00603-020-02064-9 [Google Scholar]
  19. Kittu, A., Watters, M., Cavarretta, I. & Bernhardt-Barry, M., 2019. Characterization of additive manufactured particles for DEM validation studies. Granular Matter, Volume 21, pp. 1–15, https://doi.org/10.1007/s10035-019-0908-4 [CrossRef] [Google Scholar]
  20. Laloui, L. & Sutman, M., 2021. Experimental investigation of energy piles: From laboratory to field testing. Geomechanics for Energy and the Environment, Volume 27, https://doi.org/10.1016/j.gete.2020.100214 [Google Scholar]
  21. Lashkari, A. & Jamali, V., 2021. Global and local sand–geosynthetic interface behaviour. Geotechnique, 71(4), pp. 346–367, https://doi.org/10.1680/jgeot.19.P.109 [CrossRef] [Google Scholar]
  22. Liu, F. et al., 2022. Effect of the particle size ratio on macroand mesoscopic shear characteristics of the geogridreinforced rubber and sand mixture interface. Geotextiles and Geomembranes, 50(4), pp. 779–793, https://doi.org/10.1016/j.geotexmem.2022.04.002 [CrossRef] [Google Scholar]
  23. Maghool, F. et al., 2020. Interface shear strength properties of geogrid-reinforced steel slags using a large-scale direct shear testing apparatus. Geotextiles and Geomembranes, 48(5), pp. 625–633, https://doi.org/10.1016/j.geotexmem.2020.04.001 [CrossRef] [Google Scholar]
  24. Martinez, A. and Frost, J.D., 2017. The influence of surface roughness form on the strength of sand–structure interfaces. Geotechnique Letters, 7(1), pp. 104–111, https://doi.org/10.1680/jgele.16.00169 [CrossRef] [Google Scholar]
  25. Martinez, A. & Stutz, H., 2019. Rate effects on the interface shear behaviour of normally and overconsolidated clay. Geotechnique, 69(9), pp. 801–815, https://doi.org/10.1680/jgeot.17.P.311 [CrossRef] [Google Scholar]
  26. Mehravar, M. et al., 2022. Soil water content measurement using polymer optical fibre Bragg gratings. Smart Infrastructure and Construction, 174(1), pp. 11–21, https://doi.org/10.1680/jsmic.21.00029 [Google Scholar]
  27. Tan, W. & Wang, P., 2020. Experimental Study on Seepage Properties of Jointed Rock-Like Samples Based on 3D Printing Techniques. Advances in Civil Engineering, Volume 2020, https://doi.org/10.1155/2020/9403968 [Google Scholar]
  28. Venkateswarlu, H., Krishnaraj, P. & Latha, G., 2023. Three-Dimensionally Printed Polypropylene Sheets: Insights on Mechanical and Interface Shear Behavior. Journal of Materials in Civil Engineering, 35(9), https://doi.org/10.1061/JMCEE7.MTENG-15089 [Google Scholar]
  29. Venkateswarlu, H., SaiKumar, A. & Latha, G., 2023. Sandgeogrid interfacial shear response revisited through additive manufacturing. Geotextiles and Geomembranes, https://doi.org/10.1016/j.geotexmem.2023.04.001 [Google Scholar]
  30. Wan Li, M., Feng He, T., Chang Zhi J. & Jian Chun., Y., 2014. Applications of 3D printing technology in the mechanical manufacturing. In Applied Mechanics and Materials, Volume 466, pp. 4964–4966, https://doi.org/10.4028/www.scientific.net/AMM.644-650.4964 [Google Scholar]
  31. Wong, K. V. & Hernandez, A., 2012. A Review of Additive Manufacturing. International Scholarly Research Notices, Volume 2012, https://doi.org/10.5402/2012/208760 [Google Scholar]
  32. Wu, Z. et al., 2020. A New Way to Replicate the Highly Stressed Soft Rock: 3D Printing Exploration. Rock [Google Scholar]
  33. Mechanics and Rock Engineering, 53(1), pp. 467–476, https://doi.org/10.1007/s00603-019-01926-1 [Google Scholar]
  34. Xia, Y. et al., 2021. Application of 3D Printing Technology in the Mechanical Testing of Complex Structural Rock Masses. Geofluids, Volume 2021, https://doi.org/10.1155/2021/7278131 [Google Scholar]
  35. Xia, Y. et al., 2020. Study on Model Structure and Mechanical Anisotropy of Columnar Jointed Rock Mass Based on Three-Dimensional Printing Method. International Journal of Geomechanics, 20(11), https://doi.org/10.1061/(ASCE)GM.1943-5622.0001854 [Google Scholar]
  36. Xu, M., Jin, D. & Zhou, W., 2022. An experimental study on the time-dependent behavior of crushable granular materials using 3D-printed particles. Acta Geotechnica, 17(1), pp. 93–104, https://doi.org/10.1007/s11440-021-01232-7 [CrossRef] [Google Scholar]
  37. Yavari, N., Tang, A. M., Pereira, J.-M. & Hassen, G., 2016. Effect of temperature on the shear strength of soils and the soil–structure interface. Canadian Geotechnical Journal, 53(7), https://doi.org/10.1139/cgj-2015-0355 [Google Scholar]
  38. Yin, K. et al., 2021. A review of sand–clay mixture and soil–structure interface direct shear test. Geotechnics, 1(2), pp. 260–306, https://doi.org/10.3390/geotechnics1020014 [CrossRef] [Google Scholar]
  39. Zeng, W., Ying, M. & Liu, F., 2023. Investigation on the cyclic shear response of stereoscopic geogrid-reinforced coarsegrained soil interface. Transportation Geotechnics, Volume 38, https://doi.org/10.1016/j.trgeo.2022.100905 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.