Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 02001
Number of page(s) 8
Section Experimental Investigations From Very Small Strains to Beyond Failure - Advances in Field Testing and Monitoring Techniques
DOI https://doi.org/10.1051/e3sconf/202454402001
Published online 02 July 2024
  1. Alfieri L., Salamon P., Pappenberger F., Wetterhall F., Thielen J 2012.: “Operational early warning systems for waterrelated hazards in Europe”. Environmental Science& Policy, 21, 35–49, http://dx.doi.org/10.1016/j.envsci.2012.01.008 [CrossRef] [Google Scholar]
  2. Balzano, B., Tarantino A., and Ridley A. 2019a. “Preliminary analysis on the impacts of the rhizosphere on occurrence of rainfall-induced shallow landslides”. Landslides. 1610. 1885–1901. https://doi.org/10.1007/s10346-019-01197-5 [CrossRef] [Google Scholar]
  3. Balzano, B., Tarantino A., Nicotera M. V., Forte G., de Falco M., Santo A. 2019b.: “Building physically based models for assessing rainfall-induced shallow landslide hazard at catchment scale: case study of the Sorrento Peninsula Italy”. Can. Geotech. J. 56: 1291–1303 2019 https://doi.org/10.1139/cgj-2017-0611 [CrossRef] [Google Scholar]
  4. Barla, M.; Antolini, F. 2016: “An integrated methodology for landslides’ early warning systems”. Landslides, 13, 215–228. https://doi.org/10.1007/s10346-015-0563-8 [CrossRef] [Google Scholar]
  5. Baum, R.L., and Godt, J.W. 2010: “Early warning of rainfallinduced shallow landslides and debris flows in the USA”, Landslides, 7, 259–272. [CrossRef] [Google Scholar]
  6. Baum, R.L., Savage, W.Z., and Godt, J.W. 2008: “TRIGRS – A FORTRAN program for transient rainfall infiltration and grid-based regional slope stability analysis”, vers. 2.0, U.S. Geol. Survey Open-File Rep. 424, 38. [Google Scholar]
  7. Chleborad, A. F., Baum, R. L., Godt, J. W., & Powers, P. S. 2008. “A prototype system for forecasting landslides in the Seattle, Washington”, area. Reviews in Engineering Geology, 20, 103–120. [Google Scholar]
  8. Coppola, L., Reder, A., Rianna, G., & Pagano, L. (2020). “The role of cover thickness in the rainfall-induced landslides of Nocera Inferiore 2005”. Geosciences, 10(6), 228 [CrossRef] [Google Scholar]
  9. Coppola, L., Reder, A., Tarantino, A., Mannara G., Pagano, L. 2022. “Pre-failure suction-induced deformation to inform early warning of shallow landslides: Proof of concept at slope model scale”, Engineering Geology, Volume 309, 2022, 106834, ISSN 0013–7952, https://doi.org/10.1016/j.enggeo.2022.106834 [Google Scholar]
  10. European Commission, 2017. Horizon 2020 Work Programme 2016–2017. Available online: https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016-2017/annexes/h2020-wp1617-annexga_en.pdf (accessed on 28/10/2022). [Google Scholar]
  11. Formetta, G., Simoni, S., Godt, J.W., Lu, N., and Rigon, R. 2016: “Geomorphological control on variably saturated hillslope hydrology and slope instability”. Water Resour. Res., 52, 6, 4590–4607. [CrossRef] [Google Scholar]
  12. Greco R., Pagano L. 2017.: “Basic features of the predictive tools of early warning systems for water-related natural hazards: examples for shallow landslides”. Natural Hazards Earth System Sciences, 1712, 2213–2227, https://doi.org/10.5194/nhess-17-2213-2017 [CrossRef] [Google Scholar]
  13. Intrieri E., Gigli G., Mugnai F., Fanti R., Casagli N. 2012: “Design and implementation of a landslide early warning system”. Engineering Geology, 147–148, http://doi.org/10.1016/j.enggeo.2012.07.017 [Google Scholar]
  14. Keefer D.K., Wilson R.C., Mark R.K., Brabb E.E., Brown W.M., Ellen S.D., Harp E.L., Wieczorek G.F., Alger C.S., Zatkin R.S. 1987: “Real-time landslide warning during heavy rainfall”, Science, 238, 921–925, http://doi.org/10.1126/science.238.4829.921 [CrossRef] [PubMed] [Google Scholar]
  15. Orense R.P., Towhata I., Farooq K., 2003: “Investigation of failure of sandy caused by heavy rainfall”. In Proceedings of the international Conference om Fast Slope Movement – Prediction and prevention for risk mitigation FSM2003 Sorrento. [Google Scholar]
  16. Orense, R.P., Farooq, K., Towhata, I., 2004. “Deformation behavior ofs andy slopes during rain water infiltration”. Soils & Foundations. 442, 15–30. https://doi.org/10.3208/sandf.44.2_15 [CrossRef] [Google Scholar]
  17. Ortigao, J. A. R., Justi, M. G., d’Orsi, R., & Brito, H. 2001, December. Rio-Watch 2001: “the Rio de Janeiro landslide alarm system”. In Proc. 14th Southeast Asian Geotechnical Conference, edited by: Ho and Li, Hong Kong, Balkema Vol. 3, pp. 237–241. [Google Scholar]
  18. Pagano, L, Picarelli, L., Rianna, G., and Urciuoli, G. 2010: “A simple numerical procedure for timely prediction of precipitation-induced landslides in unsaturated pyroclastic soils”, Landslides, 7, 273–289. [CrossRef] [Google Scholar]
  19. Pecoraro G., Calvello M., Piciullo L. 2019: “Monitoring strategies for local landslide early warning systems”. Landslides V.16, 213–231. https://doi.org/10.1007/s10346-018-1068-z [Google Scholar]
  20. Ponziani F., Pandolfo C., Stelluti M., Berni N., Brocca L., Moramarco T. 2012 “Assessment of rainfall thresholds and soil moisture modeling for operational hydrogeological risk prevention in the Umbria region central Italy”, Landslides, 9, 229–237. http://dx.doi.org/10.1007/s10346-011-0287-3 [CrossRef] [Google Scholar]
  21. Reder A., Rianna G., 2021: “Exploring ERA5 reanalysis potentialities for supporting landslide investigations: a test case from Campania Region Southern Italy”. Landslides, 185 1909–1924. https://doi.org/10.1007/s10346-020-01610-4 [Google Scholar]
  22. Sattele M., Brundl M., Straub D., 2015: “Reliability and effectiveness of early warning systems for natural hazards: Concept and application to debris flow warning”. Reliability Engineering and System Safety 142, 192–202. http://doi.org/10.1016/j.ress.2015.05.003 [CrossRef] [Google Scholar]
  23. Segoni S., Rosi A., Lagomarsino D., Fanti R., Casagli N., 2018: “Brief communication: Using averaged soil moisture estimates to improve the performances of a regional-scale landslide early warning system”. Nat. Hazards Earth Syst. Sci., 18, 807–812. https://doi.org/10.5194/nhess-18-807-2018 [CrossRef] [Google Scholar]
  24. Thiebes, B.; Bell, R.; Glade, T.; Jäger, S.; Mayer, J.; Anderson, M.; Holcombe, L. 2014: “Integration of a limit-equilibrium model into a landslide early warning system”. Landslides, 11, 859–875. https://doi.org/10.1007/s10346-013-0416-2 [CrossRef] [Google Scholar]
  25. Uchimura T., Towhata I., Wang L., Nishie S., Yamaguchi H., Seko I., Qiao J., 2015: “Precaution and early warning of surface failure of slopes using tilt sensors”. Soils and Foundations 2015; 555: 1086–1099. https://doi.org/10.1016/j.sandf.2015.09.010 [Google Scholar]
  26. UMS GmbH last check My, the 2nd, 2021. http://library.metergroup.com/Manuals/UMS/T4_Manual.Pdf UNISDR 2006 Available at: http://www.unisdr.org/2006/ppew/inforesources/ewc3/Global-Survey-of-Early-Warning-Systems.pdf [Google Scholar]
  27. Yang, Z., Shao, W., Qiao, J., Huang, D., Tian, H., Lei, X., & Uchimura, T. 2017. “A multi-source early warning system of MEMS based wireless monitoring for rainfall-induced landslides”. Applied Sciences, 712, 1234. [CrossRef] [Google Scholar]
  28. Zhu, H.H.; Shi, B.; Zhang, C.C. 2017: “FBG-based monitoring of geohazards: Current status and trends”. Sensors, 17, 452. https://doi.org/10.3390/s17030452 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.