Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 06004
Number of page(s) 6
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Constitutive Modelling of Geomaterials
DOI https://doi.org/10.1051/e3sconf/202454406004
Published online 02 July 2024
  1. ASTM “Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes (D1587–08)”, Annual Book of ASTM Standards, West Conshohocken PA U.S., 2008. [Google Scholar]
  2. ASTM “Standard Test Methods for Laboratory Determination of Density (Unit Weight) Of Soil Specimens (D7263–09)”, Annual Book of ASTM Standards, West Conshohocken PA U.S., 2009. [Google Scholar]
  3. ASTM “Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (D2216–10)”, Annual Book of ASTM Standards, West Conshohocken PA U.S., 2010a. [Google Scholar]
  4. ASTM “Standard Test Methods for Liquid Limit, Plastic Limit, And Plasticity Index of Soils (D4318–10)”, Annual Book of ASTM Standards, West Conshohocken PA U.S., 2010b. [Google Scholar]
  5. ASTM “Standard test methods for specific gravity of soil solids by water pycnometer (D854–10)”, Annual Book of ASTM Standards, West Conshohocken PA U.S., 2010c. [Google Scholar]
  6. ASTM “Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils (D4767–11)”, Annual Book of ASTM Standards, West Conshohocken PA U.S., 2011a. [Google Scholar]
  7. ASTM “Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading (D2435–11)”, Annual Book of ASTM Standards, West Conshohocken PA U.S., 2011b. [Google Scholar]
  8. ASTM “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) (D2487–17)”, Annual Book of ASTM Standards, West Conshohocken PA U.S., 2017. [Google Scholar]
  9. Brinkgreve, R. “Selection of Soil Models and Parameters for Geotechnical Engineering Application” In: Geo-Frontiers Congress - Calibration of Constitutive Models, Austin TX, United States, 2005, pp.69-98. http://doi.org/10.1061/40771(169)4 [Google Scholar]
  10. Caicedo, B., C., Mendoza, A., Lizcano, F., Lopez-Caballero. “Some Contributions to Mechanical Behaviors of Lacustrine Deposit in Bogotá, Colombia”, J Rock Mech Geotech Eng, 11 (4), pp. 837–49, 2019. http://doi.org/10.1016/j.jrmge.2018.12.016 [CrossRef] [Google Scholar]
  11. Camacho-Tauta, J., O., Reyes-Ortiz. #“Application of Modified Cam-Clay Model to Reconstituted Clays of the Sabana de Bogotá”, Rev Ingen de Constr, 20 (1), pp. 0–12, 2005. http://doi.org/10.18359/rcin.1265 Colombian Geological Survey. “Geologic Map of Colombia”, [GIS File] Avaliable at: http://www2.sgc.gov.co/MGC/Paginas/gmc_1M2020.aspx , accessed: 01/January/2022. [Google Scholar]
  12. Dafalias, Y. “Bounding Surface Plasticity I: Mathematical Foundation and Hypoplasticity”, J Eng Mech, 112 (9), pp. 966–87, 1986. http://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(966) [CrossRef] [Google Scholar]
  13. Dafalias, Y. “The Concept and Application of the Bounding Surface in Plasticity Theory” In: IUTAM Symposium - Physical Non-Linearities in Structural Analysis, Senlis, France, 1981, pp. 56–63. http://doi.org/10.1007/978-3-642-81582-9_9 [Google Scholar]
  14. Dafalias, Y., L., Herrmann. “Bounding Surface Formulation of Soil Plasticity.” In: Soil Mechanics-Transient and Cyclic Loads, Chichester, United Kingdom, 1982, pp. 253–82. [Google Scholar]
  15. Dafalias, Y., L., Herrmann, A., Anandarajah. “Cyclic Loading Response of Cohesive Soils Using a Bounding Surface” In: International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. [Google Scholar]
  16. Louis MO, United States, 1981, pp. 139–44. http://doi.org/10.1061/40771(169)10 [Google Scholar]
  17. Dafalias, Y., E. Popov. “A Model of Nonlinearly Hardening Materials for Complex Loading”, Acta Mech, 21, pp. 173– 92, 1975. http://doi.org/10.1007/BF01181053 [CrossRef] [Google Scholar]
  18. Jiang, J., H., Ling, V., Kaliakin. “An Associative and Non- Associative Anisotropic Bounding Surface Model for Clay”, Int J Appl Mech, 79 (3), pp. 241–45, 2012. http://doi.org/10.1115/1.4005958 [Google Scholar]
  19. Kaliakin, V. “Parameter Estimation for Time-Dependent Bounding Surface Models for Cohesive Soils” In: Geo- Frontiers Congress - Soil Constitutive Models, Austin TX, United States, 2005, pp. 237–56. [Google Scholar]
  20. Kaliakin, V., Y., Dafalias. “Simplifications to the Bounding Surface Model for Cohesive Soils”, Int J Numer Anal Methods Geomech, 13 (1), pp. 91–100, 1989. http://doi.org/10.1002/nag.1610130108 [CrossRef] [Google Scholar]
  21. Kaliakin, V., A., Nieto-Leal. “Details Pertaining to the Generalized Bounding Surface Model for Cohesive Soils: Revised & Expanded”, Department of Civil and Environmental Engineering - University of Delaware, United States, Rep.CEE2017, 2017. [Google Scholar]
  22. Kaliakin, V., A., Nieto-Leal. “Towards a Generalized Bounding Surface Model for Cohesive Soils” In: Poromechanics V - From Blast and Impact Responses of Porous Media to Constitutive Modelling, Vienna, Austria, 2013, pp. 1011– 20. [Google Scholar]
  23. Kaliakin, V., A., Nieto-Leal, M., Mashayekhi. “Modelling the Time and Temperature-Dependent Response of Cohesive Soils in a Generalized Bounding Surface Model”, Trans. Infrastruct Geotechnol, 5, pp. 250–286, 2018. https://doi.org/10.1007/s40515-018-0060-3 [Google Scholar]
  24. Kaliakin, V., A., Nieto-Leal. “Simulating The Behavior of Soft Cohesive Soils Using the Generalized Bounding Surface Model”, Intl J Comp Civil Struc Eng, 15(3), pp. 55–76, 2019. https://doi.org/10.22337/2587-9618-2019-15-3-55- 76 [Google Scholar]
  25. Krieg, R. “A Practical Two Surface Plasticity Theory”, Int J Appl Mech, 42 (3), pp. 641–46, 1975. http://doi.org/10.1115/1.3423656 [CrossRef] [Google Scholar]
  26. Lade, P. “Overview of Constitutive Models for Soils” In: Geo- Frontiers Congress - Calibration of Constitutive Models, Austin TX, United States, 2005, pp. 1–34. http://doi.org/10.1061/40786(165)1 [Google Scholar]
  27. Ling, H., D., Yue, V., Kaliakin, N., Themelis. “Anisotropic Elastoplastic Bounding Surface Model for Cohesive Soils” J Eng Mech, 128 (7), pp. 748–58, 2002. http://doi.org/10.1061/(ASCE)0733- 9399(2002)128:7(748) [CrossRef] [Google Scholar]
  28. Mendoza, C., M., Muniz de Farias. 2020. #“Critical State Model for Structured Soil”, J Rock Mech Geotech Eng, 12 (3), pp. 630–41, 2020. http://doi.org/10.1016/j.jrmge.2019.12.006 [CrossRef] [Google Scholar]
  29. Molina-Gómez, F., J., Ruge, J., Camacho-Tauta. #“Spatial Variability of the Sabana de Bogotá Clayed Soil in Reliability of Primary Consolidation Settlements: Study Case Campus Nueva Granada”, Ingen Cien, 14 (27), pp. 179–205, 2018. http://doi.org/10.17230/ingciencia.14.27.8 [CrossRef] [Google Scholar]
  30. Nieto-Leal, A. “Generalized Bounding Surface Model for Cohesive Soils: A Novel Formulation for Monotonic and Cyclic Loading”, PhD, University of Delaware, 2016. [Google Scholar]
  31. Nieto-Leal, A., V., Kaliakin. “Improved Shape Hardening Function for Bounding Surface Model for Cohesive Soils”, J Rock Mech Geotech Eng, 6, pp. 328–337, 2014. http://doi.org/10.1016/j.jrmge.2013.12.006 [CrossRef] [Google Scholar]
  32. Nieto-Leal, A., V., Kaliakin. “Additional Insight into Generalized Bounding Surface Model for Saturated Cohesive Soils”, Int J Geomech, 21(6), pp. 04021068, 2021. http://doi.org/10.1061/(ASCE)GM.1943-5622.0002012 [CrossRef] [Google Scholar]
  33. Nieto-Leal, A., V., Kaliakin, M., Mashayekhi. “Improved Rotational Hardening Rule for Cohesive Soils and Definition of Inherent Anisotropy”, Int J Numer Anal Methods Geomech, 42(3), pp. 469–487, 2017a. http://doi.org/10.1002/nag.2750 [Google Scholar]
  34. Nieto-Leal, A., V., Kaliakin, M., Mashayekhi. “Insight Into Rotational Hardening Rules: A New Proposition”, In: Poromechanics V - Creep and Plasticity, Paris, France, 2017b, pp. 1077–1082. http://doi.org/10.1061/9780784480779.134 [Google Scholar]
  35. Nieto-Leal, A., V., Kaliakin, T., Molina. “Performance of the Generalized Bounding Surface Model: Simulation of Cohesive Soils Subjected to Monotonic Loading”, In: IFCEE - Advances in Geomaterial Modelling and Site Characterization, Orlando FL, United States, 2018, pp. 197–205. https://doi.org/10.1061/9780784481585.020 [Google Scholar]
  36. Nieto-Leal, A., V., Kaliakin, R., González-Olaya. “Investigation of Parameters Associated with the GBSM for Cohesive Soils”, Trans. Infrastruct Geotechnol, 7, pp. 496–515, 2020. http://doi.org/10.1007/s40515-020-00124-9 [Google Scholar]
  37. Potts, D., L. Zdravković. “Finite Element Analysis in Geotechnical Engineering: Theory”, 1st ed., Thomas Telford Publishing, London, United Kingdom, 1999. [Google Scholar]
  38. Ruge, J., F., Molina-Gómez, E. Martínez-Rojas, L. Bulla-Cruz, J., Camacho-Tauta. #“Measuring the Liquid Limit of Soils Using Different Fall-Cone Apparatuses: A Statistical Analysis”, Measurement, 152, pp. 107352, 2020. http://doi.org/10.1016/j.measurement.2019.107352 [CrossRef] [Google Scholar]
  39. Van der Hammen, T., E, González. “A Pollen Diagram from the Quaternary of the Sabana de Bogotá (Colombia) and Its Significance for the Geology of the Northern Andes”, Neth J Geosci, 43 (3), pp. 113–17, 1964. [Google Scholar]
  40. Viana da Fonseca, A., C., Ferreira, C., Ramos, F. Molina- Gómez. #“The Geotechnical Test Site in the Greater Lisbon Area for Liquefaction Characterisation and Sample Quality Control of Cohesionless Soils”, AIMS Geosci, 5 (2), pp. 325–43, 2019. http://doi.org/10.3934/geosci.2019.2.325 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.