Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 06007
Number of page(s) 8
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Constitutive Modelling of Geomaterials
DOI https://doi.org/10.1051/e3sconf/202454406007
Published online 02 July 2024
  1. Addenbrooke, T. I., Potts, D. M., and Puzrin, A. M. 1997 “The influence of pre-failure soil stiffness on the numerical analysis of tunnel construction”. Geotechnique, 47(3): 693–712, 1997 https://doi.org/10.1680/geot.1997.47.3.693 [CrossRef] [Google Scholar]
  2. Atkinson, J. H. 2000. “Non-linear soil stiffness in routine design.” Geotechnique, 50(5): 487–508. https://doi.org/10.1680/geot.2000.50.5.487 [CrossRef] [Google Scholar]
  3. Beesley, M. E. W. 2019. “A framework for assessing parameter variability of soil stress-strain data using triaxial test databases”. Ph.D. thesis, University of Bristol, Bristol, UK. [Google Scholar]
  4. Beesley, M. E. W., and Vardanega, P. J. 2020. “Parameter variability of undrained shear strength and strain using a database of reconstituted soil tests”. Canadian Geotechnical Journal, 57(8): 1247–1255. https://doi.org/10.1139/cgj-2019–0424 [CrossRef] [Google Scholar]
  5. Beesley, M. E. W., and Vardanega, P. J. 2021. “Variability of soil stress-strain non-linearity for use in MSD analyses evaluated using databases of triaxial tests on fine-grained soils”. In Geotechnical Aspects of Underground Construction in Soft Ground, edited by Elshafie, et al., 217–225. 1st Ed. CRC Press/Taylor & Francis Group, The Netherlands. [Google Scholar]
  6. Beesley, M., Ibraim, E., and Vardanega, P. J. 2023. “An evaluation of non-linear undrained behaviour in the moderate strain range for fine-grained soils”, these proceedings. [Google Scholar]
  7. Bolton, M. D. 1993a. “What are partial factors for?” In Proceedings of the International Symposium on Limit State Design in Geotechnical Engineering, 565–583, Danish Geotechnical Society, Lyngby, Denmark. [Google Scholar]
  8. Bolton, M. D. 1993b. “Mechanisms of ground deformation due to excavation in clay”. In Proceedings KIGForum ‘93: Excavation in Urban Areas, vol. 2, 1–33, Japanese Society Soil Mechanics and Foundation Engineering, Kobe, Japan. [Google Scholar]
  9. Bolton, M. D. and Powrie, W. 1988. “Behaviour of diaphragm walls in clay prior to collapse”. Geotechnique, 38(2): 167–189. https://doi.org/10.1680/geot.1988.38.2.167 [CrossRef] [Google Scholar]
  10. Bolton, M. D., Lam, S-Y., Vardanega, P. J., Ng, C. W. W., and Ma, X. 2014. “Ground movements due to deep excavations in Shanghai: Design charts”. Frontiers of Structural and Civil Engineering, 8(3): 201–236. https://doi.org/10.1007/s11709-014-0253-y [CrossRef] [Google Scholar]
  11. Brinch Hansen, J. 1965. “Some stress-strain relationships for soils”. In Proceedings of the Sixth International Conference on Soil Mechanics and Foundation Engineering, vol. 1: 231–234, University of Toronto Press, Toronto, ON. [Google Scholar]
  12. Casey, B. 2016. Closure to “Undrained Young’s Modulus of Fine-Grained Soils” by B. Casey, J. T. Germaine, N. O. Abdulhadi, N. S. Kontopoulos, and C. A. Jones. Journal of Geotechnical and Geoenvironmental Engineering, 142(10):[07016024]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001382 [Google Scholar]
  13. Casey, B., Germaine, J. T., Abdulhadi, N. O., Kontopoulos, N. S., and Jones, C. A. 2016. “Undrained Young’s Modulus of fine-grained soils”. Journal of Geotechnical and Geoenvironmental Engineering, 142(2):[04015070]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001382 [Google Scholar]
  14. Chen, Y., and Kulhawy, F. H. 1993. “Undrained strength interrelationships among CIUC, UU, and UC tests”. Journal of Geotechnical Engineering, 119(11): 1732–1750. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:11(1732) [CrossRef] [Google Scholar]
  15. Ching, J., and Phoon, K.-K. 2013. “Multivariate distribution for undrained shear strengths under various test procedures”. Canadian Geotechnical Journal, 50(3): 907–923. https://doi.org/10.1139/cgj-2013-0002 [CrossRef] [Google Scholar]
  16. Ching, J., Phoon, K.-K. 2014. “Transformations and correlations among some clay parameters – the global database”. Canadian Geotechnical Journal, 51(6): 663–685. https://doi.org/10.1139/cgj-2013-0262 [CrossRef] [Google Scholar]
  17. Darendeli, M. B. 2001. “Development of a new family of normalized modulus reduction and material damping curves.” Ph.D. thesis, University of Texas at Austin, Texas. [Google Scholar]
  18. Deng, C., Haigh, S. K., Ma, X., and Xu, J. 2021. “A design method for flexible retaining walls in clay.” Geotechnique, 71(2): 178–187. https://doi.org/10.1680/jgeot.19.P.095 [CrossRef] [Google Scholar]
  19. Diakoumi, M., and Powrie, W. 2013. “Mobilisable strength design for flexible embedded retaining walls”. Geotechnique, 63(2): 95–106. https://doi.org/10.1680/geot.11.P.044 [CrossRef] [Google Scholar]
  20. Duncan, J. M., and Buchignani, A. L. 1976. “An engineering manual for settlement studies”. University of California at Berkeley, Berkeley, CA. [Google Scholar]
  21. Duncan, J. M., and Chang, C-Y. 1970. “Nonlinear analysis of stress and strain in soils”. Journal of the Soil Mechanics and Foundation Division, 95(6): 1629–1652. https://doi.org/10.1061/JSFEAQ.0001458 [CrossRef] [Google Scholar]
  22. Hardin, B. O., and Drnevich, V. P. 1972. “Shear modulus and damping in soils: Design equations and curves.” Journal of the Soil Mechanics and Foundation Division, 98(7): 667– 691. https://doi.org/10.1061/JSFEAQ.0001760 [Google Scholar]
  23. Hollomon, J. H. 1945. “Tensile Deformation”. Transactions of the Metallurgical Society of AIME, 162: 268–290. [Google Scholar]
  24. Jardine, R. J., Potts, D. M., Fourie, A. B. and Burland, J. B. 1986. “Studies of the influence of non-linear stress–strain characteristics in soil–structure interaction”. Geotechnique, 36(3): 377–396. https://doi.org/10.1680/geot.1986.36.3.377 [CrossRef] [Google Scholar]
  25. Klar, A., and Klein, B. 2014. “Energy-based volume loss prediction for tunnel face advancement in clays”. Geotechnique, 64(10): 776–786. https://doi.org/10.1680/geot.14.P.024 [CrossRef] [Google Scholar]
  26. Kondner, R. L. 1963. “Hyperbolic stress-strain response: Cohesive soils.” Journal of the Soil Mechanics and Foundation Division, 89(1): 115–143. https://doi.org/10.1061/JSFEAQ.0000479 [CrossRef] [Google Scholar]
  27. Kvalseth, T. O. 1983. “Note on the R2 measure of goodness of fit for nonlinear models”. Bulletin of the Psychonomic Society, 21(1): 79–80. https://doi.org/10.3758/BF03329960 [CrossRef] [Google Scholar]
  28. Lam, S. Y., and Bolton, M. D. 2011. “Energy conservation as a principle underlying mobilizable strength design for deep excavations”. Journal of Geotechnical and Geoenvironmental Engineering, 137(11): 1062–1074. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000510 [CrossRef] [Google Scholar]
  29. Matlock, H. 1970. “Correlations for design of laterally loaded piles in soft clay”. In: Offshore Technology Conference, Houston, Texas, USA. OTC 1204. [Google Scholar]
  30. Mayne, P. W. 1980. “Cam-Clay predictions of undrained strength”. J. Geotechnical Engineering Division, 106(11): 1219–1242. https://doi.org/10.1061/AJGEB6.0001060 [CrossRef] [Google Scholar]
  31. Mayne, P. W. 1985. “Stress anisotropy effects on clay strength”. Journal of Geotechnical Engineering, 111(3): 356–366. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(356) [CrossRef] [Google Scholar]
  32. Mayne, P. W., and Holtz, R. D. 1985. “Effect of Principal Stress Rotation on Clay Strength.” In Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, vol. 2, 579–582. A.A. Balkema, The Netherlands. [Google Scholar]
  33. Mayne, P. W., Coop, M. R., Springman, S., Huang, A.-B., and Zornberg, J. 2009. “State-of-the-Art Paper (SOA-1): GeoMaterial behavior and testing”. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, edited by M. Hamza, et al., vol. 4, 2777–2872. Millpress/IOS Press Rotterdam, The Netherlands. [Google Scholar]
  34. McMahon, B. T., Haigh, S. K., and Bolton, M. D. 2014. “Bearing capacity and settlement of circular shallow foundations using a nonlinear constitutive relationship”. Canadian Geotechnical Journal, 51(9): 995–1003. https://doi.org/10.1139/cgj-2013-0275 [CrossRef] [Google Scholar]
  35. Osman, A. S., and Bolton, M. D. 2005. “Simple plasticity-based prediction of the undrained settlement of shallow circular foundations on clay”. Geotechnique, 55(6): 435–447. https://doi.org/10.1680/geot.2005.55.6.435 [CrossRef] [Google Scholar]
  36. Oztoprak, S., and Bolton, M. D. 2013. “Stiffness of sands through a laboratory test database”. Geotechnique, 63(1): 54–70. https://doi.org/10.1680/geot.10.P.078 [CrossRef] [Google Scholar]
  37. Potts, D., Axelsson, K., Grande, L., Schweiger, H., Long, M., Sagaseta, C., Dolezalova, M., Anagnostou, G., de la Fuente, P., Laue, J., Herle, I., and Battelino, D. 2002. “Guidelines for the use of advanced numerical analysis”. 1st Ed., Thomas Telford, London, UK. [Google Scholar]
  38. Puzrin, A. M. and Burland, J. B. 1996. “A logarithmic stress– strain function for rocks and soils”. Geotechnique, 46(1): 157–164. https://doi.org/10.1680/geot.1996.46.1.157 [CrossRef] [Google Scholar]
  39. SERC. 1989. “Bothkennar 1989 Site Investigation Volume 2 – Results of in situ and laboratory tests”. Internal Report. Science and Engineering Research Council (SERC), UK. [Google Scholar]
  40. Stokoe, K. H., II, Darendeli, M. B., Andrus, R. D., and Brown, L. T. 1999. “Dynamic soil properties: Laboratory, field and correlation studies.” In Proceedings 2nd International Conference on Earthquake Geotechnical Engineering, edited by P. Seco e Pinto, vol. 3, 811–845. A.A. Balkema, The Netherlands. [Google Scholar]
  41. Vardanega, P. J., and Bolton, M. D. 2011. “Strength mobilization in clays and silts”. Canadian Geotechnical Journal, 48(10): 1485–1503. https://doi.org/10.1139/t11-052 [Corrigendum, 49(5):631]. [CrossRef] [Google Scholar]
  42. Vardanega, P. J., and Bolton, M. D. 2013. “Stiffness of Clays and Silts: Normalizing Shear Modulus and Shear Strain”. Journal of Geotechnical and Geoenvironmental Engineering, 139(9): 1575–158. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000887 [CrossRef] [Google Scholar]
  43. Vardanega, P. J., and Bolton, M. D. 2014. “Stiffness of Clays and Silts: Modeling Considerations”. Journal of Geotechnical and Geoenvironmental Engineering, 140(6):[06014004]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001104 [CrossRef] [Google Scholar]
  44. Vardanega, P. J., and Bolton, M. D. 2016a. “Design of Geostructural Systems”. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2(1):[04015017]. https://doi.org/10.1061/AJRUA6.0000849 [CrossRef] [Google Scholar]
  45. Vardanega, P. J., Bolton, M. D. 2016b. “Discussion of ‘Undrained Young’s Modulus of fine-grained soils’ by B. Casey, J. T. Germaine, N. O. Abdulhadi, N. S. Kontopoulos, and C. A. Jones”. Journal of Geotechnical and Geoenvironmental Engineering, 142(10):[07016023]. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001571 [Google Scholar]
  46. Vardanega, P. J., Bolton, M. D., Haigh, S. K., Whittle, R. W., Klar, A., and Williamson, M. G. 2021. “Simplified stressstrain models applied to data from triaxial and pressuremeter tests on London Clay”. In Geotechnical Aspects of Underground Construction in Soft Ground, edited by M.Z.E.B. Elshafie, et al., 430–437. 1st Ed. CRC Press/Balkema, Taylor & Francis Group, The Netherlands. [Google Scholar]
  47. Wichtmann, T., and Triantafyllidis, T. 2013. “Effect of uniformity coefficient on G/Gmax and damping ratio of uniform to well graded quartz sands”. Journal of Geotechnical and Geoenvironmental Engineering, 139(1): 59–72. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000735 [CrossRef] [Google Scholar]
  48. Zhang, Y., and Andersen, K. H. 2017. “Scaling of lateral pilep-y response in clay from laboratory stress-strain curves”. Marine Structures, 53: 124–135. https://doi.org/10.1016/j.marstruc.2017.02.002 [CrossRef] [Google Scholar]
  49. Zhang, J., Andrus, R. D., and Juang, C. H. 2005. “Normalized shear modulus and material damping ratio relationships.” Journal of Geotechnical and Geoenvironmental Engineering, 131(4): 453–464. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(453) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.