Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 12001
Number of page(s) 7
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Thermal Behaviour
DOI https://doi.org/10.1051/e3sconf/202454412001
Published online 02 July 2024
  1. Abdullah, W. S., M. S. Al-Zou’bi, and K. A. Alshibli. 1997. “On the physicochemical aspects of compacted clay compressibility.” Canadian Geotechnical Journal 34, no. 4: 551–559. https://doi.org/10.1139/t97-027 [CrossRef] [Google Scholar]
  2. ASTM International: D4186–06 Standard Test Method for One- Dimensional Consolidation Properties of Saturated Cohesive Soils Using Controlled-Strain Loading, ASTM International Standards Worldwide, 2008. [Google Scholar]
  3. Butterfield, R. 1979. “A natural compression law for soils (an advance on e–logp).” Géotechnique 29, no.4: 469–480. https://doi.org/10.1680/geot.1979.29.4.469 [CrossRef] [Google Scholar]
  4. Cekerevac, C., and L, Laloui. 2004. “Experimental study of thermal effects on the mechanical behaviour of a clay.” International Journal for Numerical and Analytical Methods in Geomechanics 28, no. 3: 209–228. https://doi.org/10.1002/nag.332 [CrossRef] [Google Scholar]
  5. Cui, Y. J., N. Sultan, and P. Delage. 2000. “A thermomechanical model for saturated clays.” Canadian Geotechnical Journal 37, no. 3: 607–620. https://doi.org/10.1139/t99-111 [CrossRef] [Google Scholar]
  6. Dhowian, A., and T. Edil. 1980. “Consolidation Behaviour of Peats.” Geotechnical Testing Journal 3, no. 3: 105–114. https://doi.org/10.1520/GTJ10881J [CrossRef] [Google Scholar]
  7. Fox, P. J., and T. B. Edil. 1996. “Effects of stress and temperature on secondary compression of peat.” Canadian Geotechnical Journal 33, no. 3: 405–415. https://doi.org/10.1139/t96-062 [CrossRef] [Google Scholar]
  8. Hawlader, B. C., B. Muhunthan, and G. Imai. 2003. “Viscosity Effects on One-Dimensional Consolidation of Clay.” International Journal of Geomechanics 3, no. 1: 99–110. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(99) [CrossRef] [Google Scholar]
  9. Houston, S. L., W. N. Houston, and Williams, N. D. 1985. “Thermo-Mechanical Behaviour of Seafloor Sediments.” Journal of Geotechnical Engineering 111, no. 11: 1249– 1263. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:11(1249) [CrossRef] [Google Scholar]
  10. Hueckel, T., and G. Baldi. 1990. “Thermoplasticity of saturated clays: Experimental constitutive study.” Journal of Geotechnical Engineering 116, no. 12: 1778–1796. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1778) [CrossRef] [Google Scholar]
  11. Imai, G., and Y. X. Tang. 1992. “A constitutive equation of onedemensinal consolidation derived from inter-connected tests.” Soils and Foundations 32, no. 2: 83–96. https://doi.org/10.3208/sandf1972.32.2_83 [CrossRef] [Google Scholar]
  12. Atkinson, J. H. and P. L. Bransby. 1977. The mechanics of soils: An introduction of critical state soil mechanics. McGraw-Hill Book Company. [Google Scholar]
  13. Kurz, D., J. Sharma, M. Alfaro, and J. Graham. 2016. “Semiempirical [Google Scholar]
  14. elastic-thermoviscoplastic model for clay.” Canadian Geotechnical Journal 53, no. 10: 1583–1599. https://doi.org/10.1139/cgj-2015-0598 [Google Scholar]
  15. Leonards, G. A. and P. Girault. 1961. “A study of the onedimensional consolidation test.” In Proc., 5th Int. Conf. Soil Mech. Found. Eng. Italy, 213–218. [Google Scholar]
  16. Li, Y., J. Dijkstra, and M. Karstunen. 2018. “Thermomechanical Creep in Sensitive Clays.” Journal of Geotechnical and Geoenvironmental Engineering 144, no. 11: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001965 [Google Scholar]
  17. Mesri, G., and M. Ajlouni. 2007. “Engineering Properties of Fibrous Peats.” Journal of Geotechnical and Geoenvironmental Engineering 133, no. 7: 850–866. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(850) [CrossRef] [Google Scholar]
  18. Mitchell, J. K. 1969. “Temperature effects on the engineeringproperties and behaviour of soils.” Highway Research Board Special Report 103: 9–28. [Google Scholar]
  19. Oikawa, H. 1987. “Compression Curve of Soft Soils.” Soils and Foundations 27, no. 3: 99–104. https://doi.org/10.3208/sandf1972.27.3_99 [CrossRef] [Google Scholar]
  20. Oikawa, H., and T. Ogino. 2001. “Promotion of secondary compression of peat by heating.” Journal of JSCE, no. 673: 183–188. https://doi.org/10.2208/jscej.2001.673_183 [Google Scholar]
  21. Plum, R. L., and M. I. Esrig. 1969. “Some Temperature Effects on Soil Compressibility And Pore Water Pressure.” Highway Research Board Special Report 103: 231–242. [Google Scholar]
  22. Šuklje, L. 1957. “The Analysis of the Consolidation Process by the Isotaches.” In Proc. 4th Int. Conf. Soil Mech. Found. Eng., London, 1: 200–206. [Google Scholar]
  23. Tanaka, H., H. Hayashi, and N. Yamazoe. 2019. “Reconsideration of the settlement behaviour of peat from view point of hydraulic conductivity.” Soils and Foundations 59, no. 2: 316–325. https://doi.org/10.1016/j.sandf.2018.11.002 [CrossRef] [Google Scholar]
  24. Towhata, I., P. Kuntiwattanaku, I. Seko, and K. Ohishi. 1993. “Volume Change of Clays Induced by Heating as Observed in Consolidation Tests.” Soils and Foundations 33, no. 4: 170–183. https://doi.org/10.3208/sandf1972.33.4_170 [CrossRef] [Google Scholar]
  25. Tsuchida, T., M. Kobayashi, and J. Mizukami. 1991. “Effect of Aging of Marine Clay and its Duplication by High Temperature Consolidation.” Soils and Foundations 31, no. 4: 133–147. https://doi.org/10.3208/sandf1972.31.4_133 [CrossRef] [Google Scholar]
  26. Tsutsumi, A., and H. Tanaka. 2012. “Combined effects of strain rate and temperature on consolidation behaviour of clayey soils.” Soils and Foundations 52, no. 2: 207–215. https://doi.org/10.1016/j.sandf.2012.02.001 [CrossRef] [Google Scholar]
  27. Watabe, Y., K. Udaka, , Y. Nakatani, and S. Leroueil. 2012. “Long-term consolidation behaviour interpreted with isotache concept for worldwide clays.” Soils and Foundations 52, no. 3: 449–464. https://doi.org/10.1016/j.sandf.2012.05.005 [CrossRef] [Google Scholar]
  28. Yamazoe, N., H. Tanaka, H. Hayashi and T. Mitachi. 2011. “Settlement-time behaviour of peat ground and applicability of conventional predicting methods.” Japanese Geotechnical Journal 6, no. 3: 395–414. https://doi.org/10.3208/jgs.6.395. (in Japanese) [CrossRef] [Google Scholar]
  29. Yamazoe, N., H. Tanaka, H. Hayash, and S. Nishimura. 2020. “A rational design approach to peat ground improvement by vertical drains.” Soils and Foundations 60, no. 6: 1387–1404. https://doi.org/10.1016/j.sandf.2020.08.009 [CrossRef] [Google Scholar]
  30. Yamazoe, N., H. Tanaka, S. Nishimura, and H. Hayashi. 2017. “Coefficient of secondary consolidation of peats and its application to ground improved by plastic-board drain method.” Japanese Geotechnical Journal 12, no. 4: 409–424. https://doi.org/10.3208/jgs.12.409. (in Japanese) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.