Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 12002
Number of page(s) 7
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Thermal Behaviour
DOI https://doi.org/10.1051/e3sconf/202454412002
Published online 02 July 2024
  1. Alsherif, N.A., and McCartney, J.S. 2015. Thermal behavior of unsaturated silt at high suction magnitudes. Géotechnique, 65(9): 703–716. doi:10.1680/geot.14.P.049. [Google Scholar]
  2. Amatya, B.L., Soga, K., Bourne-Webb, P.J., Amis, T., and Laloui, L. 2012. Thermo-mechanical behaviour of energy piles. Géotechnique, 62(6): 503–519. doi:10.1680/geot.10.p.116. [Google Scholar]
  3. Bhushan, B. 2003. Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction. Journal of vacuum science & technology., 21(6): 2262. DOI:10.1116/1.1627336. [CrossRef] [Google Scholar]
  4. Borana, L., Yin, J.-H., Singh, D.N., Shukla, S.K., and Tong, F. 2018. Direct Shear Testing Study of the Interface Behavior between Steel Plate and Compacted Completely Decomposed Granite under Different Vertical Stresses and Suctions. Journal of engineering mechanics, 144(1): 4017148. DOI:10.1061/(ASCE)EM.1943-7889.0001352. [CrossRef] [Google Scholar]
  5. Brandl, H. 2006. Energy foundations and other thermo-active ground structures. Géotechnique, 56(2): 81–122. doi:10.1680/geot.2006.56.2.81. [Google Scholar]
  6. Casagrande, A. 1936. The Determination of the Preconsolidation Load and Its Practical Significance. In Proceedings, 1st International Conference on Soil Mechanics and Foundation Engineering (ICSMFE), Cambridge, Massachusetts. pp. 60–64. [Google Scholar]
  7. Cekerevac, C., and Laloui, L. 2004. Experimental study of thermal effects on the mechanical behaviour of a clay. International Journal for Numerical and Analytical Methods in Geomechanics, 5(8): 209–228. DOI:10.1002/nag.332. [CrossRef] [Google Scholar]
  8. Chen, X., Zhang, J., Xiao, Y., and Li, J. 2015. Effect of roughness on shear behavior of red clay – concrete interface in large-scale direct shear tests. Canadian Geotechnical Journal, 52(8): 1122–1135. DOI:10.1139/cgj-2014-0399. [CrossRef] [Google Scholar]
  9. Cui, S.Q., and Zhou, C. 2022. Coupled effects of stress state and void ratio on thermal conductivity of saturated soils. Géotechnique Letters, 12(2): 148–153. doi:10.1680/jgele.22.00001. [Google Scholar]
  10. Demars, K., and Charles, R. 1982. Soil volume changes induced by temperature cycling. Canadian Geotechnical Journal, 19(2): 188–194. [CrossRef] [Google Scholar]
  11. Di Donna, A., Ferrari, A., and Laloui, L. 2016. Experimental investigations of the soil–concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures. Canadian Geotechnical Journal, 53(4): 659–672. DOI:10.1139/cgj-2015-0294. [CrossRef] [Google Scholar]
  12. Fountaine, E.R. 1954. Investigations into the mechanism of soil adhesion. Journal of Soil Science, 5(2): 251–263. DOI:10.1111/j.1365-2389.1954.tb02191.x. [CrossRef] [Google Scholar]
  13. Hossain, M.A., and Yin, J.-H. 2010. Behavior of a Compacted Completely Decomposed Granite Soil from Suction Controlled Direct Shear Tests. Journal of Geotechnical and Geoenvironmental Engineering, 136(1): 189–198. DOI:10.1061/(ASCE)GT.1943-5606.0000189. [CrossRef] [Google Scholar]
  14. Knellwolf, C., Peron, H., and Laloui, L. 2011. Geotechnical Analysis of Heat Exchanger Piles. Journal of Geotechnical and Geoenvironmental Engineering, 137(10): 890–902. DOI:10.1061/(ASCE)GT.1943-5606.0000513. [CrossRef] [Google Scholar]
  15. Laloui, L., and Di Donna, A. 2013. Energy geostructures: innovation in underground engineering. Somerset: Wiley, Somerset. [Google Scholar]
  16. Laloui, L., Nuth, M., and Vulliet, L. 2006. Experimental and numerical investigations of the behaviour of a heat exchanger pile. International Journal for Numerical and Analytical Methods in Geomechanics, 5(8): 763–781. DOI:10.1002/nag.499. [CrossRef] [Google Scholar]
  17. Li, C., Kong, G., Liu, H., and Abuel-Naga, H. 2019. Effect of temperature on behaviour of red clay–structure interface. Canadian Geotechnical Journal, 56(1): 126–134. DOI:10.1139/cgj-2017-0310. [CrossRef] [Google Scholar]
  18. Littleton, I. 1976. An experimental study of the adhesion between clay and steel. Journal of terramechanics, 13(3): 141–152. DOI:10.1016/0022-4898(76)90003-3. [CrossRef] [Google Scholar]
  19. Lupini, J.F., Skinner, A.E., and Vaughan, P.R. 1981. The drained residual strength of cohesive soils. Géotechnique, 31(2): 181–213. doi:10.1680/geot.1981.31.2.181. [Google Scholar]
  20. Maghsoodi, S., Cuisinier, O., and Masrouri, F. 2020. Thermal effects on mechanical behaviour of soil–structure interface. Canadian Geotechnical Journal, 57(1): 32–47. doi:10.1139/cgj-2018-0583. [Google Scholar]
  21. McCartney, J.S. 2013. Centrifuge Modeling of Energy Foundations. Energy Geostructures: 99–115. doi:https://doi.org/10.1002/9781118761809.ch5. [Google Scholar]
  22. Ng, C.W.W., and Zhou, C. 2014. Cyclic behaviour of an unsaturated silt at various suctions and temperatures. Géotechnique, 64(9): 709–720. doi:10.1680/geot.14.P.015. [Google Scholar]
  23. Ng, C.W.W., Zhou, C., and Chiu, C.F. 2020. Constitutive modelling of state-dependent behaviour of unsaturated soils: an overview. Acta Geotechnica, 15(10): 2705–2725. doi:10.1007/s11440-020-01014-7. [Google Scholar]
  24. Patel, G.P., and Bull, J.W. 2011. Selection of Material Used for Thermopiles for Recycling Heat within a Building. In Advances in Geotechnical Engineering (ASCE): 400–409. doi:10.1061/41165(397)42. [Google Scholar]
  25. Plevova, E., Vaculikova, L., Kozusnikova, A., Ritz, M., and Simha Martynkova, G. 2015. Thermal expansion behavior of granites. Journal of thermal analysis and calorimetry, 123(2): 1555–1561. doi:10.1007/s10973-015-4996-z. [Google Scholar]
  26. Plum, R., and Esrig, M. 1969. Some temperature effects on soil compressibility and pore water pressure. Special report, Report 103, Washington. [Google Scholar]
  27. Takada, N. 1993. Mikasa’s Direct Shear Apparatus, Test Procedures and Results. Geotechnical Testing Journal, 16(3): 314–322. DOI:10.1520/GTJ10052J. [CrossRef] [Google Scholar]
  28. Tang, A.M., Cui, Y.J., and Barnel, N. 2008. Thermomechanical behaviour of a compacted swelling clay. Géotechnique, 58(1): 45–54. doi:10.1680/geot.2008.58.1.45. [Google Scholar]
  29. Tsubakihara, Y., Kishida, H., and Nishiyama, T. 1993. Friction between cohesive soils and steel. Soils and Foundations, 33(2): 145–156. DOI:10.3208/sandf1972.33.2_145. [CrossRef] [Google Scholar]
  30. Uesugi, M., and Kishida, H. 1986. Frictional resistance at yield between dry sand and mild steel. Soils and Foundations, 26(4): 139–149. DOI:10.3208/sandf1972.26.4_139. [CrossRef] [Google Scholar]
  31. Wang, Y., Liu, X., Zhang, M., and Bai, X. 2020. Effect of Roughness on Shear Characteristics of the Interface between Silty Clay and Concrete. Advances in civil engineering, 2020. doi:10.1155/2020/8831759. [Google Scholar]
  32. Xiao, S., Suleiman, M.T., and Al-Khawaja, M. 2019. Investigation of effects of temperature cycles on soilconcrete interface behavior using direct shear tests. Soils and Foundations, 59(5): 1213–1227. DOI:10.1016/j.sandf.2019.04.009. [CrossRef] [Google Scholar]
  33. Yavari, N., Tang, A.M., Pereira, J.-M., and Hassen, G. 2016. Effect of temperature on the shear strength of soils and the soil–structure interface. Canadian Geotechnical Journal, 53(7): 1186–1194. DOI:10.1139/cgj-2015-0355. [CrossRef] [Google Scholar]
  34. Yazdani, S., Helwany, S., and Olgun, G. 2019. Influence of temperature on soil–pile interface shear strength. Geomechanics for Energy and the Environment, 18: 69–78. DOI:10.1016/j.gete.2018.08.001. [CrossRef] [Google Scholar]
  35. Yoshimi, Y., and Kishida, T. 1981. A Ring Torsion Apparatus for Evaluating Friction Between Soil and Metal Surfaces. Geotechnical Testing Journal, 4(4): 145–152. DOI:10.1520/GTJ10783J. [CrossRef] [Google Scholar]
  36. Zhang, L.M., Xu, Y., and Tang, W.H. 2008. Calibration of models for pile settlement analysis using 64 field load tests. Canadian Geotechnical Journal 45(1): 59–73. DOI:10.1139/T07-077. [CrossRef] [Google Scholar]
  37. Zhou, C., and Ng, C.W.W. 2015. A thermomechanical model for saturated soil at small and large strains. Canadian Geotechnical Journal, 52(8): 1101–1110. DOI:10.1139/cgj-2014-0229. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.