Open Access
Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 12003 | |
Number of page(s) | 6 | |
Section | Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Thermal Behaviour | |
DOI | https://doi.org/10.1051/e3sconf/202454412003 | |
Published online | 02 July 2024 |
- Abuel-Naga, H. M., Bergado, D. T., Bouazza, A., & Ramana, G. V. (2007). Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling. Canadian Geotechnical Journal, 44, 942–956. https://doi.org/10.1139/t07-031 [CrossRef] [Google Scholar]
- ASTM. (2017). D2487 − 17e1: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). In. West Conshohocken, Pa. USA: ASTM International. [Google Scholar]
- Bentil, O. T., & Zhou, C. (2022). Effects of Temperature and Thermal Cycles on the Elastic Shear Modulus of Saturated Clay. Journal of Geotechnical and Geoenvironmental Engineering, 148. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002822 [Google Scholar]
- Campanella, R. G., & Mitchell, J. K. (1968). Influence of Temperature Variations on Soil Behavior. Journal of the Soil Mechanics and Foundations Division, 94(3), 709–734. https://doi.org/10.1061/jsfeaq.0001136 [CrossRef] [Google Scholar]
- Cekerevac, C., & Laloui, L. (2004). Experimental study of thermal effects on the mechanical behaviour of a clay. International Journal for Numerical and Analytical Methods in Geomechanics, 28, 209–228. https://doi.org/10.1002/nag.332 [CrossRef] [Google Scholar]
- Cheng, Q., Zhou, C., Ng, C. W. W., & Tang, C. (2020). Effects of soil structure on thermal softening of yield stress. Engineering Geology, 269, 105544. [Google Scholar]
- Graham, J., Tanaka, N., Crilly, T., & Alfaro, M. (2001). Modified Cam-Clay modelling of temperature effects in clays. Canadian Geotechnical Journal, 38, 608–621. https://doi.org/10.1139/cgj-38-3-608 [CrossRef] [Google Scholar]
- Hueckel, T., & Baldi, G. (1990). Thermoplasticity of Saturated Clays: Experimental Constitutive Study. Journal of Geotechnical Engineering, 116, 1778–1796. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1778) [CrossRef] [Google Scholar]
- Israelachvili, J. (2011). Intermolecular and surface forces. In (3rd ed.). New York: 3rd Edition. Academic Press. [Google Scholar]
- Laloui, L. (2001). Thermo-mechanical behaviour of soils. Revue Française de Génie Civil, 5(6), 809–843. https://doi.org/10.1080/12795119.2001.9692328 [CrossRef] [Google Scholar]
- Laloui, L., & Di Donna, A. (2013). Energy Geostructures. In L. Laloui & A. Di Donna (Eds.), Energy Geostructures: Innovation in Underground Engineering (pp. 1–304). Hoboken, NJ USA: John Wiley & Sons, Inc. [Google Scholar]
- Lee, J.-S., & Santamarina, J. C. (2005). Bender Elements: Performance and Signal Interpretation. In Journal of Geotechnical and Geoenvironmental Engineering (Vol. 131, pp. 1063–1070). [Google Scholar]
- Leong, E. C., Cahyadi, J., & Rahardjo, H. (2009). Measuring shear and compression wave velocities of soil using bender–extender elements. In Canadian Geotechnical Journal (Vol. 46, pp. 792–812). [Google Scholar]
- McCartney, J. S., Sanchez, M., & Tomac, I. (2016). Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management. In Computers and Geotechnics (Vol. 75, pp. 244–256): Elsevier Ltd. [Google Scholar]
- Ng, C. W. W., Akinniyi, D. B., & Zhou, C. (2020). Volume change behaviour of a saturated lateritic clay under thermal cycles. In Bulletin of Engineering Geology and the Environment (Vol. 80, pp. 653–661). [Google Scholar]
- Ng, C. W. W., Akinniyi, D. B., Zhou, C., & Chiu, C. F. (2019a) Comparisons of weathered lateritic, granitic and volcanic soils: Compressibility and shear strength. Engineering Geology, 249, 235–240. https://doi.org/10.1016/j.enggeo.2018.12.029 [CrossRef] [Google Scholar]
- Ng, C. W. W., Mu, Q. Y., & Zhou, C. (2019b). Effects of specimen preparation method on the volume change of clay under cyclic thermal loads. In Géotechnique (Vol. 69, pp. 146–150). [Google Scholar]
- Pan, Y., Coulibaly, J. B., & Rotta Loria, A. F. (2020). Thermally induced deformation of coarse-Fgrained soils under nearly zero vertical stress. In Géotechnique Letters (Vol. 10, pp. 486–491). [Google Scholar]
- Zhou, C., Xu, J., & Ng, C. W. W. (2015). Effects of temperature and suction on secant shear modulus of unsaturated soil. In Géotechnique Letters (Vol. 5, pp. 123–128). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.