Open Access
Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 14008 | |
Number of page(s) | 7 | |
Section | Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Sensitive and Liquefiable Soils: Tailings and Other Highly Brittle Strain-Softening Soils | |
DOI | https://doi.org/10.1051/e3sconf/202454414008 | |
Published online | 02 July 2024 |
- Alarcon-Guzman, A., Leonards, G.A., and Chameau, J.L. 1988. Undrained Monotonic and Cyclic Strength of Sands. Journal of Geotechnical Engineering, 114(10): 1089–1109. [CrossRef] [Google Scholar]
- Bandini, V., and Coop, M.R. 2011. The Influence of Particle Breakage on the Location of the Critical State Line of Sands. Soils and Foundations, 51(4): 591–600. http://doi.org/10.3208/sandf.51.591. [CrossRef] [Google Scholar]
- Bishop, A.W., Alpan, I., Blight, G.E., and Donald, I.B. 1960. Factors Controlling the Strength of Partly Saturated Cohesive Soils. In Research Conference on Shear Strength of Cohesive Soils. ASCE. pp. 503–532. [Google Scholar]
- Castro G. 1969. Liquefaction of Sands. Harvard University, Harvard Soil. Mech. Ser. 81, (January 1969). [Google Scholar]
- Chiaro, G., Kiyota, T., Umar, M., and Cappellaro, C. 2022. Earthquake-Induced Flow-Type Slope Failure in Weathered Volcanic Deposits—A Case Study: The 16 April 2016 Takanodai Landslide, Japan. Geosciences, 12(11):394. http://doi.org/10.3390/geosciences12110394. [Google Scholar]
- Coop, M.R., and Lee, I.K. 1993. The behaviour of granular soils at elevated stresses. In Proceedings of the Wroth Memorial Symposium, Oxford, England, 1992, (1990): pp. 186–198. http://doi.org/10.1680/psm.19164.0012. [Google Scholar]
- Cubrinovski, M., and Ishihara, K. 2000. Flow Potential of Sandy Soils with Different Grain Compositions. Soils and Foundations, 40(4): 103–119. http://doi.org/10.3208/sandf.40.4_103. [CrossRef] [Google Scholar]
- Fredlund, D.G., Rahardjo, H., and Fredlund, M.D. 2012. Unsaturated Soil Mechanics in Engineering Practice. In Unsaturated Soil Mechanics in Engineering Practice. John Wiley & Sons, Inc., Hoboken, NJ, USA. [Google Scholar]
- Grozic, J.L., Robertson, P.K., and Morgenstern, N.R. 1999. The behavior of Loose Gassy Sand. Canadian Geotechnical Journal, 36(3): 482–492. http://doi.org/10.1139/cgj-36-3-482. [CrossRef] [Google Scholar]
- Hardin, B.O. 1985. Crushing of Soil Particles. Journal of Geotechnical Engineering, 111(10): 1177–1192. http://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177). [CrossRef] [Google Scholar]
- Hyodo, M., Aramaki, N., Okabayashi, T., Nakata, Y., and Murata, H. 1996. Steady State and Liquefaction Strengths of Crushable Soils. Doboku Gakkai Ronbunshu, 1996(554): 197–209. http://doi.org/10.2208/jscej.1996.554_197. [Google Scholar]
- Hyodo, M., Hyde, A.F.L., and Aramaki, N. 1998. Liquefaction of crushable soils. Geotechnique, 48(4): 527–543. Thomas Telford Ltd. [CrossRef] [Google Scholar]
- Hyodo, M., Tanimizu, H., Yasufuku, N., and Murata, H. 1994. Undrained Cyclic and Monotonic Triaxial Behaviour of Saturated Loose Sand. Soils and Foundations, 34(1): 19–32. http://doi.org/10.3208/sandf1972.34.19. [CrossRef] [Google Scholar]
- Ishihara, K. 1993. Liquefaction and flow failure during earthquakes. Geotechnique, 43(3): 351–451. http://doi.org/10.1680/geot.1993.43.3.351. [CrossRef] [Google Scholar]
- Ishihara, K., Tatsuoka, F., and Yasuda, S. 1975. Undrained Deformation and Liquefaction of Sand Under Cyclic Stresses. Soils and Foundations, 15(1): 29–44. http://doi.org/10.3208/sandf1972.15.29. [CrossRef] [Google Scholar]
- Ishikawa, T., and Miura, S. 2011. Influence of Freeze-Thaw Action on Deformation-Strength Characteristics and Particle Crushability of Volcanic Coarse-Grained Soils. Soils and Foundations, 51(5): 785–799. http://doi.org/10.3208/sandf.51.785. [CrossRef] [Google Scholar]
- Kawamura, S., Kawajiri, S., Hirose, W., and Watanabe, T. 2019. Slope Failures/Landslides Over a Wide Area in the 2018 Hokkaido Eastern Iburi Earthquake. Soils and Foundations, 59(6): 2376–2395. Japanese Geotechnical Society. http://doi.org/10.1016/j.sandf.2019.08.009. [CrossRef] [Google Scholar]
- Kazama, M., Takamura, H., Unno, T., Sento, N., and Uzuoka, R. 2006. Liquefaction Mechanism of Unsaturated Volcanic Sandy Soils. Doboku Gakkai Ronbunshuu C, 62(2): 546–561. http://doi.org/10.2208/jscejc.62.546. [CrossRef] [Google Scholar]
- Li, R., Wang, F., and Zhang, S. 2020. Controlling Role of Ta-d Pumice on the Coseismic Landslides Triggered by 2018 Hokkaido Eastern Iburi Earthquake. Landslides, 17(5): 1233–1250. Landslides. http://doi.org/10.1007/s10346-020-01349-y. [Google Scholar]
- Matsumaru, T., Unno, T., and Midorikawa, Y. 2021. Numerical Simulation of Unsaturated Liquefaction Test Using Volcanic Soils Damaged in the 2018 Hokkaido Iburi Eastern Earthquake. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering (SE/EE)), 77(4):I_533-I_543. http://doi.org/10.2208/jscejseee.77.4_I_533. [Google Scholar]
- Nakata, T., and Miura, S. 2007. Change in Void Structure Due to Particle Breakage of Volcanic Coarse-Grained Soil and Its Evaluation. Doboku Gakkai Ronbunshuu C, 63(1): 224–236. http://doi.org/10.2208/jscejc.63.224. [CrossRef] [Google Scholar]
- Nakata, Y., Hyodo, M., Murata, H., and Yasufuku, N. 1998. Flow Deformation of Sands Subjected to Principal Stress Rotation. Soils and Foundations, 38(2): 115–128. http://doi.org/10.3208/sandf.38.2_115. [CrossRef] [Google Scholar]
- Osanai, N., Yamada, T., Hayashi, S. ichiro, Kastura, S., Furuichi, T., Yanai, S., Murakami, Y., Miyazaki, T., Tanioka, Y., Takiguchi, S., and Miyazaki, M. 2019. Characteristics of Landslides Caused by the 2018 Hokkaido Eastern Iburi Earthquake. Landslides, 16(8): 1517–1528. Landslides. http://doi.org/10.1007/s10346-019-01206-7. [Google Scholar]
- Sasitharan, S., Robertson, P.K., Sego, D.C., and Morgenstern, N.R. 1994. State-Boundary Surface for Very Loose Sand and Its Practical Implications. Canadian Geotechnical Journal, 31(3): 321–334. http://doi.org/10.1139/t94-040. [CrossRef] [Google Scholar]
- Vaid, Y.P., and Chern, J.C. 1985. Cyclic and Monotonic Undrained Response of Saturated Sands. In Advances in the Art of Testing Soils Under Cyclic Conditions. pp. 120–147. [Google Scholar]
- Vilhar, G., Jovičić, V., and Coop, M.R. 2013. The Role ofParticle Breakage in the Mechanics of a Non-Plastic Silty Sand. Soils and Foundations, 53(1): 91–104. http://doi.org/10.1016/j.sandf.2012.12.006. [Google Scholar]
- Wang, H., Sato, T., Koseki, J., Chiaro, G., and Tan Tian, J. 2016. A System to Measure Volume Change of Unsaturated Soils in Undrained Cyclic Triaxial Tests. Geotechnical Testing Journal, 39(4):20150125. http://doi.org/10.1520/GTJ20150125. [Google Scholar]
- Yoshimine, M., and Ishihara, K. 1998. Flow Potential of Sand During Liquefaction. Soils and Foundations, 38(3): 189–198. http://doi.org/10.3208/sandf.38.3_189. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.