Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 14013
Number of page(s) 6
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Sensitive and Liquefiable Soils: Tailings and Other Highly Brittle Strain-Softening Soils
DOI https://doi.org/10.1051/e3sconf/202454414013
Published online 02 July 2024
  1. Aleshin, E. 1978. Comments on Utilization of Mining and Mineral Wastes. Proceedings of the 6th Mineral Waste Utilization Symposium. Co-sponsored by the U.S. Bureau of Mines and IIT Research Institute. Chicago, Illinois. [Google Scholar]
  2. ASTM (2014) Standard test methods for specific gravity of soil solids by water pycnometer. D854. ASTM International, West Conshohocken, Pennsylvania, USA. 7 [Google Scholar]
  3. ASTM (2017a) Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). D2487. ASTM International, West Conshohocken, Pennsylvania, USA. 10 [Google Scholar]
  4. ASTM (2017b) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. D4318. ASTM International, West Conshohocken, Pennsylvania, USA. 20 [Google Scholar]
  5. ASTM (2017c) Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. D7928. ASTM International, West Conshohocken, Pennsylvania, USA. 25 [Google Scholar]
  6. ASTM (2017d) Standard test methods for minimum index density and unit weight of soils and calculation of relative density. D4254. ASTM International, West Conshohocken, Pennsylvania, USA. [Google Scholar]
  7. Bastos, L.A.C., Silva, G.C.S., Mendes, J.C., Peixoto, R.A.F. Using iron ore tailings from tailings dams as road material, J. Mater. Civ. Eng. 28 (2016), https://doi.org/10.1061/(ASCE)MT.1943-5533.0001613. [Google Scholar]
  8. Boulanger, R. W., Chan, C. K., Seed, H. B., Seed, R. B., and Sousa, J. B., “A Low-Compliance Bi-Directional Cyclic Simple Shear Apparatus,” Geotechnical Testing Journal, GTJODJ, Vol. 16, No. 1, March 1993, pp. 36–45. [CrossRef] [Google Scholar]
  9. Budhu, M. (1988). A new simple shear apparatus. Geotechnical Testing Journal. Vol. 11, No. 4, pp. 281–287, DOI: 10.1520/GTJ10660J. [CrossRef] [Google Scholar]
  10. Carneiro, A., Fourie, A. 2020. Assessing the impacts of uncertain future closure costs when evaluating strategies for tailings management, J. Clean. Prod. 247, 119173, https://doi.org/10.1016/j.jclepro.2019.119173. [Google Scholar]
  11. Consoli, N.C.; Vogt, J.C.; Silva, J.P.S.; Chaves, H.M.; Scheuermann Filho, H.C.; Moreira, E.B.; Lotero, A. Behaviour of compacted filtered iron ore tailings–Portland cement blends: New Brazilian trend for tailings disposal by stacking. Appl. Sci. 2022, 12, 836, https://doi.org/10.3390/app12020836 [Google Scholar]
  12. Corte, M.B., Festugato, L., Consoli, N.C. 2017. Development of a cyclic simple shear apparatus. Soils and rocks. Volume 40, N. 3, September-December, https://doi.org/10.28927/SR.403279 [Google Scholar]
  13. Davies, M. 2011. Filtered Dry Stacked Tailings: The Fundamentals, University of British Columbia, Vancouver. [Google Scholar]
  14. Festugato, L., Consoli, N. C. & Fourie, A. 2015. Cyclic shear behaviour of fibre-reinforced mine tailings. Geosynthetics International, 22, No. 2, 196–206. http://dx.doi.org/10.1680/gein.15.00005 [CrossRef] [Google Scholar]
  15. Festugato, L., Fourie, A. and Consoli, N. C. 2013. Cyclic shear response of fibre-reinforced cemented paste backfill. Geotechnique Letters 3, 5–12, http://dx.doi.org/10.1680/geolett.12.00042 [CrossRef] [Google Scholar]
  16. Fundacao Estadual do Meio Ambiente (FEAM); Inventario de residuos solidos da mineracao: Ano base 2017. Belo Horizonte, 2018, p. 47. [Google Scholar]
  17. Hanzawa H. 1980. Undrained strength and stability analysis for a quick sand. Soils and Foundations, 20(2): 17–29. [Google Scholar]
  18. Hu, et al. 2017. Geotechnical Properties of Mine Tailings. Journal of Materials in Civil Engineering. 29 (2). http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001736. [Google Scholar]
  19. Jewell, R.J. & Fourie, A.B. 2015. Paste and thickened tailings – A guide, 3rd ed., Australian Centre for Geomechanics, Australia. [Google Scholar]
  20. Ladd, R.S. 1978. Preparing test specimens using undercompaction. Geotech Test J 1(1):16–23 [CrossRef] [Google Scholar]
  21. Lade P.V. & Yamamuro J.A. 1997. Effects of nonplastic fines on static liquefaction of sands. Canadian Geotechnical Journal, 34(6): 918–928. [CrossRef] [Google Scholar]
  22. Lade P.V. 1993. Initiation of static instability in the submarine Nerlerk berm. Canadian Geotechnical Journal, 30(6): 895–904. [CrossRef] [Google Scholar]
  23. Li, S., Chen, Q., Wang, X. 2016. Superiority of filtered tailings storage facility to conventional tailings impoundment in southern rainy regions of China, Sustainability 8 (11) 1130, https://doi.org/10.3390/su8111130 [CrossRef] [Google Scholar]
  24. Li, W. and Coop, M.R. 2019. Mechanical behaviour of Panzhihua iron tailings. Canadian Geotechnical Journal. 56(3): 420–435, https://doi.org/10.1139/cgj2018-0032. [CrossRef] [Google Scholar]
  25. Mao X, Fahey M. Behaviour of calcareous soils in undrained cyclic simple shear. Geotechnique 2003;53(8):715–27. [CrossRef] [Google Scholar]
  26. Marcuson W.F. III, Hynes M.E., and Franklin A.G. 1990. Evaluation and use of residual strength in seismic safety analysis of embankments. Earthquake Spectra, 6(3): 529–572. [CrossRef] [Google Scholar]
  27. Morgenstern, N.R.; Vick, S.G. & Zyl, D.V. 2015. Independent expert engineering investigation and review panel – Report on Mount Polley tailings storage facility breach. Government of British Columbia, Victoria, 147 p. [Google Scholar]
  28. Morgenstern, N.R.; Vick, S.G.; Viotti, C.B. & Watts, B.D. 2016. Fundao tailings dam review panel - Report on the immediate causes of the failure of the Fundao dam. Fundao Tailings Dam Review Panel, [s.l.], 66 p. [Google Scholar]
  29. Reid, D. et al. 2018. Characterisation of a subaqueously deposited silt iron ore tailings. Geotechnique Letters 8, 278–283, https://doi.org/10.1680/jgele.18.00105 [CrossRef] [Google Scholar]
  30. Robertson, P.K.; de Melo, L.; Williams, D.J. & Wilson, G.W. 2019. Report of the expert panel on the technical causes of the failure of Feijao Dam I. Expert Panel, [s.l.], 71 p. [Google Scholar]
  31. Salgado, R., Bandini, P., and Karim, A., 2000. Shear Strength and Stiffness of Silty Sand. J. Geotech. Geoenviron. Eng., Vol. 126, No. 5, pp. 451–462. [CrossRef] [Google Scholar]
  32. Schaper, D., Lessa, R., Freitas, A., Weeks, B. 2020. Decharacterization and closure of TSF: concepts of the Brazilian legislation and international criteria. In Planning for closure 2020, 3rd International Congress on Planning for Closure of Mining Operations 499 (Chapter 6). Gecamin Digital Publications. [Google Scholar]
  33. Skempton, A. W. (1954). The pore-pressure coefficients A and B. Geotechnique 4, No. 4, 143–147. [CrossRef] [Google Scholar]
  34. Skempton, A.W. 1985. Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique, vol, 35, no 1, p. 3-18. [Google Scholar]
  35. Velten, R.Z., Consoli, N.C., Scheuermann Filho, H.C., Wagner, A.C., Schnaid, F., da Costa, J.P.R. 2022. Influence of grading and fabric arising from the initial compaction on the geomechanical characterisation of compacted copper tailings. Geotechnique. https://doi.org/10.1680/jgeot.22.00087 [Google Scholar]
  36. Verdugo, R. and Ishihara, K. 1996. The steady state of sandy soils. Soils and Foundations. Vol.36, no. 2, 81–91, Japanese Geotechnical Society, June. [CrossRef] [Google Scholar]
  37. Villet WCB, Sitar N, Johnson KA. Simple shear tests on highly overconsolidated offshore silts. In: Proceedings of the offshore technology conference, 6–9 May, Houston, USA, Paper No OTC 4918, 207-218; 1985. [Google Scholar]
  38. Wijewickreme, D., Sanin, M. V. & Greenaway, R. G. 2005. Cyclic shear response of fine-grained mine tailings. Canadian Geotechnical Journal, 42, 1408–1421. [CrossRef] [Google Scholar]
  39. Wood, D., Drescher, A., & Budhu, M. (1979). On the Determination of Stress State in the Simple Shear Apparatus. Geotechnical Testing Journal, 2(4), 211. https://doi.org/10.1520/GTJ10460J [CrossRef] [Google Scholar]
  40. Yamamuro J.A. & Covert K.M. 2001. Monotonic and cyclic liquefaction of very loose sands with high silt content. Journal of Geotechnical and Geoenvironmental Engineering, 127(4): 314–324. [CrossRef] [Google Scholar]
  41. Yoshimine M., Robertson P.K., & Wride C.E. 1999. Undrained shear strength of clean sands to trigger flow liquefaction. Canadian Geotechnical Journal, 36(5): 891–906. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.