Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 14014
Number of page(s) 8
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Sensitive and Liquefiable Soils: Tailings and Other Highly Brittle Strain-Softening Soils
DOI https://doi.org/10.1051/e3sconf/202454414014
Published online 02 July 2024
  1. Been, K., and M. G. Jefferies. “A state parameter for sands.” Geotech 35, no. 2 (June): 99–112, 1985 http://doi.org/10.1680/geot.1985.35.2.99 [Google Scholar]
  2. Dash, H. K., T. G. Sitharam, and B. A. Baudet. “Influence of non-plastic fines on the response of a silty sand to cyclic loading.” Soils Found 50, no. 5 (December): 695–704, 2010. http://doi.org/10.3208/sandf.50.695 [CrossRef] [Google Scholar]
  3. Hsiao, D-H., and >V. T-A. Phan. “Evaluation of static and dynamic properties of sand-fines mixtures through the state and equivalent state parameters.” Soil Dyn Earth Eng 84, (May): 134–144, 2016, http://doi.org/10.1016/j.soildyn.2016.02.006 [Google Scholar]
  4. Ladd, R. S. “Preparing test specimens using undercompaction.” Geotech Testing J 1, no. 1: 16–23, 1978 [CrossRef] [Google Scholar]
  5. Mitchell, J. K. “Fundamentals of soil behavior.” 1st ed., John Wiley and Sons Inc., New York, U.S.A., 1976. [Google Scholar]
  6. Naeini, S. A., and M. H. Baziar. “Effect of fines content on steady-state strength of mixed and layered samples of a sand.” Soil Dyn Earth Eng 24, no. 3 (April): 181–187, 2004, http://doi.org/10.1016/j.soildyn.2003.11.003 [CrossRef] [Google Scholar]
  7. Papadopoulou, A.I. “Εργαστηριακή διερεύνηση της συμπεριφοράς ιλυωδών άμμων σε συνθήκες μονοτονικής και ανακυκλικής φόρτισης.” (Laboratory investigation into the behaviour of silty sands under monotonic and cyclic loading), PhD Thesis, Aristotle University of Thessaloniki, Greece, 2008, in [Greek]. [Google Scholar]
  8. Papadopoulou, A. and Th. Tika “The effect of fines on critical state and liquefaction resistance characteristics of nonplastic silty sands.” Soils Found 48, no. 5 (October): 713–725, 2008. http://doi.org/10.3208/sandf.48.713 [Google Scholar]
  9. Papadopoulou, A. I., T. M. Tika, and G. E. Koninis. “Το κρίσιμο ποσοστό λεπτοκόκκων μειγμάτων κοκκωδών εδαφών.” (The threshold fines content of granular mixtures.), In: 6th Panhellenic Conference on Geotechnical and Geoenvironmental Engineering, Volos, Greece, 2010, in [Greek]. [Google Scholar]
  10. Polito, C. P. “The effects of non-plastic and plastic fines on the liquefaction of sandy soils.”, PhD Thesis, Virginia Polytechnic Institute and State University, 1999. [Google Scholar]
  11. Polito, C. P., and J. R. Martin II. “Effects of nonplastic fines on the liquefaction resistance of sands.” J Geotech Geoenviron Eng 127, no. 5 (May): 408–415, 2001. http://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408) [CrossRef] [Google Scholar]
  12. Porcino, D. D., V. Diano, T. Triantafyllidis and T. Wichtmann “Predicting undrained static response of sand with nonplastic fines in terms of equivalent granular state parameter.” Acta Geotech 15, no. 4 (April): 867–882, 2020. http://doi.org/10.1007/s11440-019-00770-5 [Google Scholar]
  13. Thevanayagam, S. “Liquefaction potential and undrained fragility of silty sands.”, In: 12th World Conference on Earthquake Engineering, Wellington, New Zealand, 2000, Paper 2383. [Google Scholar]
  14. Thevanayagam, S., T. Shenthan, S. Mohan, and J. Liang. “Undrained fragility of clean sands, silty sands, and sandy silts.” J Geotech Geoenviron Eng 128, no. 10 (October): 849–859, 2002. http://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849) [CrossRef] [Google Scholar]
  15. Thevanayagam, S., M. Fiorillo, and J. Liang. “Effect of nonplastic fines on undrained cyclic strength of silty sands.”, In: “Soil Dynamics and Liquefaction 2000.”, ASCE, Geo-Denver, Denver, Colorado, United States, 77–91, 2000. http://doi.org/10.1061/40520(295)6 [Google Scholar]
  16. Vaid, Y. P. “Liquefaction of silty soils.”, In: “Ground Failures under Seismic Conditions.”, ASCE, GSP 44, New York, United States, 1–16. [Google Scholar]
  17. Verdugo, R., and K. Ishihara.. “The steady state of sandy soils.” Soils Found 36, no. 2 (June): 81–91, 1996. http://doi.org/10.3208/sandf.36.2_81 [CrossRef] [Google Scholar]
  18. Xenaki, V. C., and G. A. Athanasopoulos. “Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fine.” Soil Dyn Earth Eng 23, no. 3 (April): 1–12, 2003. http://doi.org/10.1016/S0267-7261(02)00210-5 [Google Scholar]
  19. Yang, S. L., R. Sandven, and L. Grande. “Steady-state lines of sand-silt mixtures.” Can Geotech J 43, no. 11 (November): 1213–1219, 2006. https://doi.org/10.1139/t06-069 [CrossRef] [Google Scholar]
  20. Zlatović, S., and K. Ishihara. “On the influence of non plastic fines on residual strength.” In: 1st International Conference on Earthquake Geotechnical Engineering, Rotterdam, The Netherlands, 1995. 239–244, 1995. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.