Open Access
Issue
E3S Web of Conf.
Volume 547, 2024
International Conference on Sustainable Green Energy Technologies (ICSGET 2024)
Article Number 03018
Number of page(s) 7
Section Energy
DOI https://doi.org/10.1051/e3sconf/202454703018
Published online 09 July 2024
  1. Libich, J., Máca, J., Vondrák, J., Čech, O. and Sedlaříková, M., 2018. Supercapacitors: Properties and applications. Journal of Energy Storage, 17, pp.224-227. [CrossRef] [Google Scholar]
  2. Raghavendra, K.V.G., Vinoth, R., Zeb, K., Gopi, C.V.M., Sambasivam, S., Kummara, M.R., Obaidat, I.M. and Kim, H.J., 2020. An intuitive review of supercapacitors with recent progress and novel device applications. Journal of energy storage, 31, p.101652. [CrossRef] [Google Scholar]
  3. Jia, M., Zhang, C. and Cheng, J., 2021. Origin of Asymmetric Electric Double Layers at Electrified Oxide/Electrolyte Interfaces. The journal of physical chemistry letters, 12(19), pp.4616-4622. [Google Scholar]
  4. Lu, M., 2013. Supercapacitors: materials, systems, and applications. John Wiley & Sons. [Google Scholar]
  5. Brousse, T., Bélanger, D. and Long, J.W., 2015. To be or not to be pseudocapacitive?. Journal of The Electrochemical Society, 162(5), p.A5185. [CrossRef] [Google Scholar]
  6. Chatterjee, D.P. and Nandi, A.K., 2021. A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry A, 9(29), pp.15880-15918. [CrossRef] [Google Scholar]
  7. Muzaffar, A., Ahamed, M.B., Deshmukh, K. and Thirumalai, J., 2019. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews, 101, pp.123-145. [CrossRef] [Google Scholar]
  8. Rajkumar, M., Hsu, C.T., Wu, T.H., Chen, M.G. and Hu, C.C., 2015. Advanced materials for aqueous supercapacitors in the asymmetric design. Progress in Natural Science: Materials International, 25(6), pp.527-544. [CrossRef] [Google Scholar]
  9. Iro, Z.S., Subramani, C. and Dash, S.S., 2016. A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci, 11(12), pp.10628-10643. [CrossRef] [Google Scholar]
  10. Jian, X., Liu, S., Gao, Y., Tian, W., Jiang, Z., Xiao, X., Tang, H. and Yin, L., 2016. Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions. J. Electr. Eng, 4(2), pp.75-87. [Google Scholar]
  11. Yadav, M.S., 2020. Metal oxides nanostructure-based electrode materials for supercapacitor application. Journal of Nanoparticle Research, 22(12), pp.1-18. [CrossRef] [PubMed] [Google Scholar]
  12. Wang, Y., Ding, Y., Guo, X. and Yu, G., 2019. Conductive polymers for stretchable supercapacitors. Nano Research, 12(9), pp.1978-1987. [CrossRef] [Google Scholar]
  13. Sahu, S.K., Badgayan, N.D. and Rama Sreekanth, P.S., 2022. Rheological Properties of HDPE based thermoplastic polymeric nanocomposite reinforced with multidimensional carbon-based nanofillers. Biointerf Res Appl Chem, 12, pp.5709-5715. [Google Scholar]
  14. Badgayan, N.D., Sahu, S.K., Samanta, S. and Sreekanth, P.S., 2019. Evaluation of dynamic mechanical and thermal behavior of HDPE reinforced with MWCNT/h-BNNP: an attempt to find possible substitute for a metallic knee in transfemoral prosthesis. International Journal of Thermophysics, 40(10), pp.1-20. [CrossRef] [Google Scholar]
  15. Sahu, S.K. and Rama Sreekanth, P.S., 2022. Mechanical, thermal and rheological properties of thermoplastic polymer nanocomposite reinforced with nanodiamond, carbon nanotube and graphite nanoplatelets. Advances in Materials and Processing Technologies, pp.1-11. [Google Scholar]
  16. Badgayan, N.D., Sahu, S.K., Samanta, S. and Sreekanth, P.R., 2020. An insight into mechanical properties of polymer nanocomposites reinforced with multidimensional filler system: a state of art review. Materials Today: Proceedings, 24, pp.422-431. [CrossRef] [Google Scholar]
  17. Pradhan, S., Sahu, S.K., Pramanik, J. and Badgayan, N.D., 2022. An insight into mechanical & thermal properties of shape memory polymer reinforced with nanofillers; a critical review. Materials Today: Proceedings, 50, pp.1107-1112. [CrossRef] [Google Scholar]
  18. Lu, W., Hartman, R., Qu, L. and Dai, L., 2011. Nanocomposite electrodes for high-performance supercapacitors. The Journal of Physical Chemistry Letters, 2(6), pp.655-660. [Google Scholar]
  19. Fuoss, R.M., 1934. Properties of Electrolytic Solutions. XI. The Temperature Coefficient of Conductance. Journal of the American Chemical Society, 56(9), pp.1857-1859. [Google Scholar]
  20. Peng, C., Jin, J. and Chen, G.Z., 2007. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochimica Acta, 53(2), pp.525-537. [CrossRef] [Google Scholar]
  21. El-Kady, M.F., Strong, V., Dubin, S. and Kaner, R.B., 2012. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 335(6074), pp.1326-1330. [CrossRef] [PubMed] [Google Scholar]
  22. Dai, K., Lu, L., Liang, C., Geng, L. and Zhu, G., 2016. Large-scale synthesis of cobalt sulfide/carbon nanotube hybrid and its excellent electrochemical capacitance performance. Materials Letters, 176, pp.42-45. [CrossRef] [Google Scholar]
  23. Wen, Z., Wang, X., Mao, S., Bo, Z., Kim, H., Cui, S., Lu, G., Feng, X. and Chen, J., 2012. Crumpled nitrogen‐doped graphene nanosheets with ultrahigh pore volume for high‐performance supercapacitor. Advanced materials, 24(41), pp.5610-5616. [Google Scholar]
  24. Dubal, D.P., Jagadale, A.D. and Lokhande, C.D., 2012. Big as well as light weight portable, Mn3O4 based symmetric supercapacitive devices: Fabrication, performance evaluation and demonstration. Electrochimica Acta, 80, pp.160-170. [CrossRef] [Google Scholar]
  25. Das, R.K., Liu, B., Reynolds, J.R. and Rinzler, A.G., 2009. Engineered macroporosity in single-wall carbon nanotube films. Nano letters, 9(2), pp.677-683. [CrossRef] [PubMed] [Google Scholar]
  26. Zheng, W., Lv, R., Na, B., Liu, H., Jin, T. and Yuan, D., 2017. Nanocellulose-mediated hybrid polyaniline electrodes for high performance flexible supercapacitors. Journal of Materials Chemistry A, 5(25), pp.12969-12976. [CrossRef] [Google Scholar]
  27. Zhang, H., Hu, Z., Li, M., Hu, L. and Jiao, S., 2014. A high-performance supercapacitor based on a polythiophene/multiwalled carbon nanotube composite by electropolymerization in an ionic liquid microemulsion. Journal of Materials Chemistry A, 2(40), pp.17024-17030. [CrossRef] [Google Scholar]
  28. Hsu, Y.K., Chen, Y.C., Lin, Y.G., Chen, L.C. and Chen, K.H., 2013. Direct-growth of poly (3, 4-ethylenedioxythiophene) nanowires/carbon cloth as hierarchical supercapacitor electrode in neutral aqueous solution. Journal of power sources, 242, pp.718-724. [CrossRef] [Google Scholar]
  29. Liu, Y., Zhang, B., Yang, Y., Chang, Z., Wen, Z. and Wu, Y., 2013. Polypyrrole-coated α-MoO 3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors. Journal of Materials Chemistry A, 1(43), pp.13582-13587. [CrossRef] [Google Scholar]
  30. Lang, X., Hirata, A., Fujita, T. and Chen, M., 2011. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature nanotechnology, 6(4), pp.232-236. [Google Scholar]
  31. Yu, Z. and Thomas, J., 2014. Energy storing electrical cables: integrating energy storage and electrical conduction. Advanced materials, 26(25), pp.4279-4285. [Google Scholar]
  32. Du, F., Yu, D., Dai, L., Ganguli, S., Varshney, V. and Roy, A.K., 2011. Preparation of tunable 3D pillared carbon nanotube–graphene networks for high-performance capacitance. Chemistry of Materials, 23(21), pp.4810-4816. [CrossRef] [Google Scholar]
  33. Cai, J., Niu, H., Li, Z., Du, Y., Cizek, P., Xie, Z., Xiong, H. and Lin, T., 2015. High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS applied materials & interfaces, 7(27), pp.14946-14953. [Google Scholar]
  34. Safavi, A., Kazemi, S.H. and Kazemi, H., 2011. Electrochemically deposited hybrid nickel–cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors. Electrochimica acta, 56(25), pp.9191-9196. [CrossRef] [Google Scholar]
  35. Wang, Y., Yang, Y., Zhang, X., Liu, C. and Hao, X., 2015. One-step electrodeposition of polyaniline/nickel hexacyanoferrate/sulfonated carbon nanotubes interconnected composite films for supercapacitor. Journal of Solid State Electrochemistry, 19(10), pp.3157-3168. [CrossRef] [Google Scholar]
  36. Iyer, M.S., Rajkumar, P., Sanghavi, B., Parvathy, G., Aravinth, K. and Kim, J., 2024. Elevating energy storage performance of bismuth antimonate coupled with MXene and graphitic nanofibers in advanced supercapacitors. Journal of Power Sources, 602, p.234379. [CrossRef] [Google Scholar]
  37. Yesaswi, C.S. and Sreekanth, P.R., 2022. Characterisation of Silver-coated Teflon fabric-reinforced Nafion ionic polymer metal composite with carbon nanotubes and graphene nanoparticles. Iranian Polymer Journal, 31(4), pp.485-502. [CrossRef] [Google Scholar]
  38. Nayak, A., Rama Sreekanth, P.S., Sahu, S.K. and Sahu, D., 2017. Structural tuning of low band gap intermolecular push/pull side-chain polymers for organic photovoltaic applications. Chinese Journal of Polymer Science, 35(9), pp.1073-1085. [CrossRef] [Google Scholar]
  39. Lencwe, M.J., Olwal, T.O., Chowdhury, S.D. and Sibanyoni, M., 2024. Nonsolitary two-way DC-to-DC converters for hybrid battery and supercapacitor energy storage systems: A comprehensive survey. Energy Reports, 11, pp.2737-2767. [CrossRef] [Google Scholar]
  40. Diaz-Gonzalez, F., Chillón-Antón, C., Llonch-Masachs, M., Galceran-Arellano, S., Rull-Duran, J., Bergas-Jane, J. and Bullich-Massagué, E., 2022. A hybrid energy storage solution based on supercapacitors and batteries for the grid integration of utility scale photovoltaic plants. Journal of Energy Storage, 51, p.104446. [CrossRef] [Google Scholar]
  41. Sahu, S.K., Badgayan, N.D. and Sreekanth, P.R., 2020. Numerical investigation on the effect of wall thickness on quasistatic crushing properties of nylon honeycomb structure. Materials Today: Proceedings, 27, pp.798-804. [CrossRef] [Google Scholar]
  42. Argyrou, M.C., Marouchos, C.C., Kalogirou, S.A. and Christodoulides, P., 2021. Modeling a residential grid-connected PV system with battery– supercapacitor storage: Control design and stability analysis. Energy Reports, 7, pp.4988-5002. [CrossRef] [Google Scholar]
  43. Sahu, S.K, Badgayan, N.D, Samanta, S. and Sreekanth, P.S.R, 2018, May. Dynamic mechanical thermal analysis of high density polyethylene reinforced with nanodiamond, carbon nanotube and graphite nanoplatelet. In Materials Science Forum, 917, pp. 27-31. [Google Scholar]
  44. Guo, L., Hu, P. and Wei, H., 2023. Development of supercapacitor hybrid electric vehicle. Journal of Energy Storage, 65, p.107269. [CrossRef] [Google Scholar]
  45. Sahu, S.K. and Sreekanth, P.R., 2022. Experimental investigation of in-plane compressive and damping behavior anisotropic graded honeycomb structure. Arabian Journal for Science and Engineering, 47(12), pp.15741-15753. [CrossRef] [Google Scholar]
  46. Swaminathan, R., Pazhamalai, P., Krishnamoorthy, K., Natraj, V., Krishnan, V. and Kim, S.J., 2024. Tungsten trioxide based high-performance supercapacitor for application in electric vehicles. Journal of Energy Storage, 83, p.110642. [CrossRef] [Google Scholar]
  47. Paladugu, S.R.M., Sreekanth, P.R., Sahu, S.K., Naresh, K., Karthick, S.A., Venkateshwaran, N., Ramoni, M., Mensah, R.A., Das, O. and Shanmugam, R., 2022. A comprehensive review of self-healing polymer, metal, and ceramic matrix composites and their modeling aspects for aerospace applications. Materials, 15(23), p.8521. [CrossRef] [PubMed] [Google Scholar]
  48. Shirkhani, M., Tavoosi, J., Danyali, S., Sarvenoee, A.K., Abdali, A., Mohammadzadeh, A. and Zhang, C., 2023. A review on microgrid decentralized energy/voltage control structures and methods. Energy Reports, 10, pp.368-380. [CrossRef] [Google Scholar]
  49. Sahu, S.K. and Sreekanth, P.R., 2022. Artificial neural network for prediction of mechanical properties of HDPE based nanodiamond nanocomposite, Polymer (Korea), 46(5), pp.614-620. [CrossRef] [Google Scholar]
  50. Shadabi, H. and Kamwa, I., 2022. A decentralized non-linear dynamic droop control of a hybrid energy storage system blue for primary frequency control in integrated AC-MTDC systems. International Journal of Electrical Power & Energy Systems, 136, p.107630. [CrossRef] [Google Scholar]
  51. Kushwaha, Y.S., Hemanth, N.S., Badgayan, N.D. and Sahu, S.K., 2022. Free vibration analysis of PLA based auxetic metamaterial structural composite using finite element analysis. Materials Today: Proceedings, 56, pp.1063-1067. [CrossRef] [Google Scholar]
  52. Badgayan, N.D, Sahu, S.K, Samanta, S. and Sreekanth, P.S.R, 2018, May. Assessment of bulk mechanical properties of HDPE hybrid composite filled with 1D/2D nanofiller system. In Materials Science Forum, 917, pp. 12-16. [Google Scholar]
  53. Sahu, S.K. and Rama Sreekanth, P.S., 2022. Multiscale RVE modeling for assessing effective elastic modulus of HDPE based polymer matrix nanocomposite reinforced with nanodiamond. International Journal on Interactive Design and Manufacturing, https://doi.org/10.1007/s12008-022-01080-z [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.