Open Access
Issue
E3S Web of Conf.
Volume 547, 2024
International Conference on Sustainable Green Energy Technologies (ICSGET 2024)
Article Number 03019
Number of page(s) 8
Section Energy
DOI https://doi.org/10.1051/e3sconf/202454703019
Published online 09 July 2024
  1. A. Agarwal, S. N. Mishra, and V. K. Vashishtha, Solar Tilt Measurement of Array for Building Application and Error Analysis. Int. J. Renew. Energy Res. 2, (2022). https://doi.org/10.20508/ijrer.v2i4.291.g6088 [Google Scholar]
  2. A. Agarwal, O. M. Seretse, M. T. Letsatsi, and E. Dintwa, Review of Energy Status and Associated Conservational Issues in Botswana. MATEC Web Conf. 17, 206003 (2018). https://doi.org/10.1051/matecconf/201817206003 [Google Scholar]
  3. Asaad Yasseen Al-Rabeeah, Performance Analysis of a Parabolic Trough Solar Collector, Hungarian University Of Agriculture And Life Sciences, 2023 [Google Scholar]
  4. A. Goel and G. Manik, Solar thermal system—an insight into parabolic trough solar collector and its modeling. Renew. Energy Syst. (Elsevier, 2021), pp. 309–337. https://doi.org/10.1016/B978-0-12-820004-9.00021-8 [CrossRef] [Google Scholar]
  5. Parabolic Trough Collector. SunBeam’s Solar Dynamics (n.d.). https://www.solardynllc.com/parabolic-trough [Google Scholar]
  6. K. Ravi Kumar and K. S. Reddy, Thermal analysis of solar parabolic trough with porous disc receiver. Appl. Energy 86, 1804 (2009). https://doi.org/10.1016/j.apenergy.2008.11.007 [Google Scholar]
  7. K. S. Reddy, K. R. Kumar, and G. V. Satyanarayana, Numerical Investigation of Energy-Efficient Receiver for Solar Parabolic Trough Concentrator. Heat Transfer Eng. 29, 961 (2008). https://doi.org/10.1080/01457630802125757 [CrossRef] [Google Scholar]
  8. K. S. Reddy and G. V. Satyanarayana, Numerical Study of Porous Finned Receiver for Solar Parabolic Trough Concentrator. Eng. Appl. Comput. Fluid Mech. 2, 172 (2008). https://doi.org/10.1080/19942060.2008.11015219 [Google Scholar]
  9. P. Wang, D. Y. Liu, and C. Xu, Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams. Appl. Energy 102, 449 (2013). https://doi.org/10.1016/j.apenergy.2012.07.026 [Google Scholar]
  10. P. D. Tagle-Salazar, K. D. P. Nigam, and C. I. Rivera-Solorio, Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards. Green Process. Synth. 9, 595 (2020). https://doi.org/10.1515/gps-2020-0059 [CrossRef] [Google Scholar]
  11. A. Siraj, N. R. Babu, and K. S. Reddy, Static analysis of dump truck chassis frame made of composite materials. Int. J. Eng. Sci. Technol. 11, 21 (2019). https://doi.org/10.4314/ijest.v11i2.2 [CrossRef] [Google Scholar]
  12. M. R. Gomaa, R. J. Mustafa, M. Al-Dhaifallah, and H. Rezk, Cycle driven by hybrid solar collectors and a waste heat recovery system. Energy Reports 6, 3425 (2020). https://doi.org/10.1016/j.egyr.2020.12.011 [CrossRef] [Google Scholar]
  13. O. M. Seretse, A. Agarwal, M. T. Letsatsi, O. M. Moloko, and M. S. Batlhalefi, Design, Modelling and Experimental Investigation of an Economic Domestic STHW System Using T*Sol® Simulation in Botswana. In: Jayakumar V., Ranganathan S., Devika D., Sridevi S. (eds) MATEC Web of Conferences. 17, 06004 (2018). https://doi.org/10.1051/matecconf/201817206004 [Google Scholar]
  14. M. Malekan, A. Khosravi, and M. El Haj Assad, Parabolic trough solar collectors. In: Design and Performance Optimization of Renewable Energy Systems (Elsevier, 2021), pp. 85–100. https://doi.org/10.1016/B978-0-12-821602-6.00007-9 [CrossRef] [Google Scholar]
  15. Z. Wang, General Design of a Solar Thermal Power Plant. In: Design of Solar Thermal Power Plants (Elsevier, 2019), pp. 117–224. https://doi.org/10.1016/B978-0-12-815613-1.00003-1 [CrossRef] [Google Scholar]
  16. A. Parrales, E. D. Reyes-Téllez, W. Ajbar, and J. A. Hernández, Artificial neural network applied to the renewable energy system performance. In: Artificial Neural Networks for Renewable Energy Systems and Real-World Applications (Elsevier, 2022), pp. 11–43. https://doi.org/10.1016/B978-0-12-820793-2.00006-9 [Google Scholar]
  17. A. K. Pandey, R. K. R., and M. Samykano, Solar energy: direct and indirect methods to harvest usable energy. In: Dye-Sensitized Solar Cells (Elsevier, 2022), pp. 1–24. https://doi.org/10.1016/B978-0-12-818206-2.00007-4 [Google Scholar]
  18. K. Ajay and L. Kundan, Investigation of the Parabolic Shaped Solar Collector Utilizing Nanofluid (CuO-H 2 O and SiO 2 -H 2 O) as a Working Fluid. J. Eng. 2016, 1 (2016). https://doi.org/10.1155/2016/5729576 [Google Scholar]
  19. M. Ilunga and A. Agarwal, A Finite-Element-Analysis-Based Feasibility Study for Optimizing Pantograph Performance Using Aluminum Metal Matrix Composites. Processes 12, 445 (2024). https://doi.org/10.3390/pr12030445 [CrossRef] [Google Scholar]
  20. O. B. Molwane, A. Agarwal, and R. Marumo, Industrial Computational Analysis of Aerodynamic Characteristics of Delta-Shaped Aircraft. In: Advances in Lightweight Materials and Structures, edited by Praveen Kumar A., T. Dirgantara, and P. V. Krishna (Springer, Singapore., 2020), pp. 761–770. https://doi.org/10.1007/978-981-15-7827-4_77 [Google Scholar]
  21. W. B. Musinguzi and P. Yu, Enhanced Thermal Performance of Shell and Tube Heat Exchangers Using TiO2/Water Nanofluids. J. Sustainability Energy 2, 154 (2023). https://doi.org/10.56578/jse020305 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.