Open Access
Issue |
E3S Web of Conf.
Volume 550, 2024
The 16th International Scientific Conference of Civil and Environmental Engineering for the PhD. Students and Young Scientists – Young Scientist 2024 (YS24)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 8 | |
Section | Civil Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202455001013 | |
Published online | 16 July 2024 |
- Directive (EU), 2018/844 of the European Parliament and of the Council of 30 may 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency, Off. J. Eur. Union (2018). [Google Scholar]
- P. Biddulph, V. Gori, C.A. Elwell, C. Scott, C. Rye, R. Lowe, T. Oreszczyn, Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements, Energy Build. 78 (0) (2014) 10–16 http://dx.doi.org/10.1016/j.enbuild.2014.04.004. [CrossRef] [Google Scholar]
- E. Lucchi, Thermal transmittance of historical brick masonries: a comparison among standard data, analytical calculation procedures, and in situ heat flow meter measurements, Energy Build. 134 (2017) 171–184 https://doi.org/10.1016/j.enbuild.2016.10.045. [CrossRef] [Google Scholar]
- E. Lucchi, Thermal transmittance of historical stone masonries: a comparison among standard, calculated and measured data, Energy Build. 151 (2017) 393–405 https://doi.org/10.1016/j.enbuild.2017.07.002. [CrossRef] [Google Scholar]
- E. Burman, D. Mumovic, J. Kimpian, Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings, Energy 77 (2014) 153–163 https://doi.org/10.1016/j.energy.2014.05.102. [CrossRef] [Google Scholar]
- D. Majcen, L. Itard, H. Visscher, Actual and theoretical gas consumption in Dutch dwellings: what causes the differences? Energy Policy 61 (2013) 460–471 https://doi.org/10.1016/j.enpol.2013.06.018. [CrossRef] [Google Scholar]
- P. de Wilde, The gap between predicted and measured energy performance of buildings: a framework for investigation, Autom. Constr. 41 (2014) 40–49 https://doi.org/10.1016/j.autcon.2014.02.009. [CrossRef] [Google Scholar]
- M. Sunikka-Blank, R. Galvin, Introducing the prebound effect: the gap between performance and actual energy consumption, Build. Res. Inf. 40 (3) (2012) 260–273. [CrossRef] [Google Scholar]
- D. Majcen, L.C.M. Itard, H. Visscher, Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: discrepancies and policy implications, Energy Policy 54 (2013) 125–136 https://doi.org/10.1016/j.enpol.2012. 11.008. [Google Scholar]
- Thermal Insulation – Building Elements – In-Situ Measurement of Thermal Resistance and Thermal Transmittance – Part 1: Heat Flow Meter Method (ISO 9869-1:2014). [Google Scholar]
- R. Albatici, A.M. Tonelli, M. Chiogna, A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance, Appl. Energy 141 (0) (2015) 218–228 http://dx.doi.org/10.1016/j.apenergy.2014.12.035. [CrossRef] [Google Scholar]
- G. Desogus, S. Mura, R. Ricciu, Comparing different approaches to in situ measurement of building components thermal resistance, Energy Build. 43 (10) (2011) 2613–2620 https://doi.org/10.1016/j.enbuild.2011.05.025. [CrossRef] [Google Scholar]
- F. Asdrubali, F. D’Alessandro, G. Baldinelli, F. Bianchi, Evaluating in situ thermal transmittance of green buildings masonries—a case study, Case Stud. Constr. Mater. 1 (0) (2014) 53–59 http://dx.doi.org/10.1016/j.cscm.2014.04. 004. [Google Scholar]
- L. Evangelisti, C. Guattari, P. Gori, R. Vollaro, In situ thermal transmittance measurements for investigating differences between wall models and actual building performance, Sustainability 7 (8) (2015) 10388 https://doi.org/10. 3390/su70810388. [CrossRef] [Google Scholar]
- K. Gaspar, M. Casals, M. Gangolells, A comparison of standardized calculation methods for in situ measurements of façades U-value, Energy Build. 130 (2016) 592–599 https://doi.org/10.1016/j.enbuild.2016.08.072. [CrossRef] [Google Scholar]
- L. Evangelisti, C. Guattari, F. Asdrubali, Influence of heating systems on thermal transmittance evaluations: simulations, experimental measurements and data post- processing, Energy Build. 168 (2018) 180–190 https://doi.org/10. 1016/j.enbuild.2018.03.032. [CrossRef] [Google Scholar]
- E. Cuerda, O. Guerra-Santin, F.J. Neila, N. Romero, Evaluation and comparison of building performance in use through on-site monitoring and simulation modelling, in: Proceedings of the 3rd IBPSA-England Conference BSO 2016, Great North Museum, Newcastle, 2016. [Google Scholar]
- V. Gori, V. Marincioni, P. Biddulph, C.A. Elwell, Inferring the thermal resistance and effective thermal mass distribution of a wall from in situ measurements to characterise heat transfer at both the interior and exterior surfaces, Energy Build. 135 (2017) 398–409 https://doi.org/10.1016/j.enbuild.2016.10.043. [CrossRef] [Google Scholar]
- J. Bros-Williamson, C. Garnier, J.I. Currie, A longitudinal building fabric and energy performance analysis of two homes built to different energy principles, Energy Build. 130 (2016) 578–591 https://doi.org/10.1016/j.enbuild.2016. 08.052. [CrossRef] [Google Scholar]
- Ž. Koški, I. Ištoka, I. Milicevi ˇ c´, Klasifikacija elemenata zgrada u funkciji mjerenja zrakopropusnosti, Grad¯evinar 65 (2013). [Google Scholar]
- STN 73 0540-3 : 2013, Tepelná ochrana budov. Tepelnotechnické vlastnosti stavebných konštrukcií a budov - Časť 3: Vlastnosti prostredia a stavebných výrobkov. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.