Open Access
Issue
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
Article Number 01014
Number of page(s) 17
DOI https://doi.org/10.1051/e3sconf/202455201014
Published online 23 July 2024
  1. Mishra, R.S., Mahoney, M.W., McFadden, S.X., Mara, N.A., Mukherjee, A.K., 1999. High strain rate superplasticity in a friction stir processed 7075 Al alloy, Scripta Materialia, 42(2), pp. 163-168. [CrossRef] [Google Scholar]
  2. Mishra, R.S., and Ma, Z.Y., 2005. Friction stir welding and processing, Materials Science and Engineering: R: Reports, 50(1-2), pp. 1-78. [CrossRef] [Google Scholar]
  3. Yang, Q., Xiao, B.L., Ma, Z.Y., 2013. Enhanced superplasticity in friction stir processed Mg-Gd-Y-Zr alloy, Journal of Alloys and Compounds, 551, pp. 61-66 [CrossRef] [Google Scholar]
  4. Wang, G., Zhao, Y., Hao, Y., 2018. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing, Journal ofMaterials Science & Technology, 34(1), pp. 73-91. [CrossRef] [Google Scholar]
  5. Abioye, T.E., Zuhailawati, H., Aizad, S., Anasyida, A.S., 2019. Geometrical, microstructural and mechanical characterization of pulse laser welded thin sheet 5052-H32 aluminium alloy for aerospace applications, Transactions of Nonferrous Metals Society of China, 29(4), pp. 667-679. [CrossRef] [Google Scholar]
  6. Mabuwa, S. and Msomi, V., 2020. Comparative analysis between normal and submerged friction stir processed friction stir welded dissimilar aluminium alloy joints. Journal of Materials Research and Technology, 9(5), pp. 9632-9644. [CrossRef] [Google Scholar]
  7. Mehdi, H. and Mishra, R.S., 2021. Effect of friction stir processing on mechanical properties and heat transfer of TIG welded joint of AA6061 and AA7075. Defence Technology, 17(3), pp. 715-727. [CrossRef] [Google Scholar]
  8. Jesus, J.S., Costa, J.M., Loureiro, A. and Ferreira, J.M., 2017. Fatigue strength improvement of GMAW T-welds in AA 5083 by friction-stir processing. International Journal of Fatigue, 97, pp. 124-134. [CrossRef] [Google Scholar]
  9. Costa, J.D.M., Jesus, J.S., Loureiro, A., Ferreira, J.A.M. and Borrego, L.P., 2014. Fatigue life improvement of mig welded aluminium T-joints by friction stir processing. International journal of fatigue, 61, pp. 244-254. [CrossRef] [Google Scholar]
  10. Yang, X.W., Li, W.Y., Li, H.Y., Yao, S.T., Sun, Y.X., Sun, Y.X. and Lu, M.E.I., 2018. Microstructures and microhardness for sheets and TIG welded joints of TA15 alloy using friction stir spot processing. Transactions of Nonferrous Metals Society of China, 28(1), pp. 55-65. [CrossRef] [Google Scholar]
  11. Liyakat, N.A. and Veeman, D., 2022. Improvement of mechanical and microstructural properties of AA 5052-H32 TIG weldment using friction stir processing approach. Journal of Materials Research and Technology, 19, pp. 332-344. [CrossRef] [Google Scholar]
  12. Derazkola, H.A., Eyvazian, A. and Simchi, A., 2020. Submerged friction stir welding of dissimilar joints between an Al-Mg alloy and low carbon steel: Thermo-mechanical modeling, microstructural features, and mechanical properties. Journal of Manufacturing Processes, 50, pp. 68-79. [CrossRef] [Google Scholar]
  13. Huang, G., Wu, J., Hou, W. and Shen, Y., 2018. Microstructure, mechanical properties and strengthening mechanism of titanium particle reinforced aluminum matrix composites produced by submerged friction stir processing. Materials Science and Engineering: A, 734, pp. 353-363. [CrossRef] [Google Scholar]
  14. Ramaiyan, S., Santhanam, S.K.V. and Muthuguru, P., 2018. Effect of scroll pin profile and tool rotational speed on mechanical properties of submerged friction stir processed AZ31B magnesium alloy. Materials Research, 21, p.e20170769. [CrossRef] [Google Scholar]
  15. Yan B., Li H., Zhang J., Kong N. The Effect of Initial Annealing Microstructures on the Forming Characteristics of Ti-4Al-2V Titanium Alloy. Metals. 2019; 9(5):576. [Google Scholar]
  16. Subramani, V., Jayavel, B., Sengottuvelu, R. and Lazar, P.J.L., 2019. Assessment of microstructure and mechanical properties of stir zone seam of friction stir welded magnesium AZ31B through nano-SiC. Materials, 12(7), 1044. [CrossRef] [PubMed] [Google Scholar]
  17. Prosgolitis, C.G., Lambrakos, S.G. and Zervaki, A.D., 2018. Phase-field modeling of nugget zone for a AZ31-Mg-alloy friction stir weld. Journal of Materials Engineering and Performance, 27, pp. 5102-5113.y [CrossRef] [Google Scholar]
  18. Sathari, N.A.A., Razali, A.R., Ishak, M. and Shah, L.H., 2015. Mechanical strength of dissimilar AA7075 and AA6061 aluminum alloys using friction stir welding. International Journal of Automotive and Mechanical Engineering, 11, 2713. [CrossRef] [Google Scholar]
  19. Msomi, V. and Mbana, N., 2020. Mechanical properties of friction stir welded AA1050-H14 and AA5083-H111 joint: sampling aspect. Metals, 10 (2), 214. [CrossRef] [Google Scholar]
  20. Mabuwa, S. and Msomi, V., 2021. The effect of FSP conditions towards microstructure and mechanical properties of the AA6082/AA8011 TIG-welded joint. Materials Research Express, 8 (6), p.066514. [CrossRef] [Google Scholar]
  21. Kopyšciaήski, M., Wçglowska, A., Pietras, A., Hamilton, C. and Dymek, S., 2016. Friction stir welding of dissimilar aluminum alloys. Key Engineering Materials, 682, pp. 31-37. [CrossRef] [Google Scholar]
  22. KumarSingh, S., Tiwari, R.M., Kumar, S. and Kumar, S., 2018. Mechanical properties and micrstructure of Al-5083 by TIG. Materials Today: Proceedings, 5(1), pp. 819-822. [CrossRef] [Google Scholar]
  23. Sameer, M.D. and Birru, A.K., 2019. Mechanical and metallurgical properties of friction stir welded dissimilar joints of AZ91 magnesium alloy and AA 6082-T6 aluminium alloy. Journal of Magnesium and Alloys, 7 (2), pp. 264-271. [CrossRef] [Google Scholar]
  24. Yang, S., Yang, X., Lu, X., Li, M., Zuo, H. and Wang, Y., 2023. Strength calculation and microstructure characterization of HAZ softening area in 6082-T6 aluminum alloy CMT welded joints. Materials Today Communications, p.107077. [CrossRef] [Google Scholar]
  25. Xu, X., Zhu, W., Guo, X., Liang, C. and Deng, Y., 2023. Effect of ageing treatment process on the microstructure development and mechanical properties of 6082 Al alloy. Journal of Alloys and Compounds, 935, p.167892. [CrossRef] [Google Scholar]
  26. Zhao, W., Liu, R.F., Yan, J., Wang, X., Zhang, H.W. and Wang, W.X., 2022. Overall optimization in microstructure and mechanical properties of 5 wt% SiC/7075Al composites by high-frequency electric pulse assisted treatment. Journal of Materials Research and Technology, 21, pp. 2156-2167. [CrossRef] [Google Scholar]
  27. Hussein, W. and Al-Shammari, M.A., 2018, December. Fatigue and fracture behaviours of FSW and FSP joints of AA5083-H111 aluminium alloy. In IOP Conference Series: Materials Science and Engineering (Vol. 454, No. 1, p. 012055). IOP Publishing. [CrossRef] [Google Scholar]
  28. Sameer, M.D. and Birru, A.K., 2019. Mechanical and metallurgical properties of friction stir welded dissimilar joints of AZ91 magnesium alloy and AA 6082-T6 aluminium alloy. Journal of Magnesium and Alloys, 7 (2), pp. 264-271. [CrossRef] [Google Scholar]
  29. Kosturek, R., Torzewski, J., Wachowski, M. and Sniežek, L., 2022. Effect of Welding Parameters on Mechanical Properties and Microstructure of Friction Stir Welded AA7075-T651 Aluminum Alloy Butt Joints. Materials, 15 (17), p.5950. [CrossRef] [PubMed] [Google Scholar]
  30. Mehdi, H. and Mishra, R.S., 2020. Influence of friction stir processing on weld temperature distribution and mechanical properties of TIG-welded joint of AA6061 and AA7075. Transactions of the Indian Institute of Metals, 73, pp. 1773-1788. [CrossRef] [Google Scholar]
  31. Wei, J., He, C., Zhao, Y., Qie, M., Qin, G. and Zuo, L., 2023. Evolution of microstructure and properties in 2219 aluminum alloy produced by wire arc additive manufacturing assisted by interlayer friction stir processing. Materials Science and Engineering: A, 868, p. 144794. [CrossRef] [Google Scholar]
  32. He, P., Bai, X. and Zhang, H., 2023. Microstructure refinement and mechanical properties enhancement of wire and arc additively manufactured 6061 aluminum alloy using friction stir processing post-treatment. Materials Letters, 330, p.133365. [CrossRef] [Google Scholar]
  33. Paidar, M., Vignesh, R.V., Khorram, A., Ojo, O.O., Rasoulpouraghdam, A. and Pustokhina, I., 2020. Dissimilar modified friction stir clinching of AA2024-AA6061 aluminum alloys: Effects of materials positioning. Journal of Materials Research and Technology, 9(3), pp. 6037-6047. [CrossRef] [Google Scholar]
  34. Msomi, V. and Moni, V., 2022. The influence of materials positioning on microstructure and mechanical properties of friction stir welded AA5083/AA6082 dissimilar joint. Advances in Materials and Processing Technologies, 8(2), pp. 2087-2101. [CrossRef] [Google Scholar]
  35. Mabuwa, S., Msomi, V., Mehdi, H. and Saxena, K.K., 2023. Effect of material positioning on Si-rich TIG welded joints of AA6082 and AA8011 by friction stir processing. Journal of Adhesion Science and Technology, 37(17), pp. 2484-2502. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.