Open Access
Issue
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
Article Number 01052
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202455201052
Published online 23 July 2024
  1. Cheng, Hefa, Yanguo Zhang, Aihong Meng, and Qinghai Li. "Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun city." Environmental science & technology 41, 21 (2007): 7509-7515. [CrossRef] [PubMed] [Google Scholar]
  2. Pan, Peiyuan, Weike Peng, Jiarui Li, Heng Chen, Gang Xu, and Tong Liu. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation." Energy 238 (2022): 121947. [CrossRef] [Google Scholar]
  3. Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
  4. Joshi, L. M., Bharti, R. K., & Singh, R. (2022). I nternet of things and machine learning‐based approaches in the urban solid waste management: Trends, challenges, and future directions. Expert Systems, 39(5), e12865. [CrossRef] [Google Scholar]
  5. Omar Ouda KM, et al. "Waste to energy potential: a case study of Saudi Arabia." Renewable and Sustainable Energy Reviews 61 (2016): 328-340. [CrossRef] [Google Scholar]
  6. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X., & & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686. [CrossRef] [Google Scholar]
  7. Indira, D. N. V. S. L.S., Ganiya, R. K. Ashok Babu, P. Xavier, A. Kavisankar, L. Hemalatha, S. & & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  8. Andeobu, L., Wibowo, S., & Grandhi, S. (2022). Artificial intelligence applications for sustainable solid waste management practices in Australia: A systematic review. Science of The Total Environment, 834, 155389. [CrossRef] [Google Scholar]
  9. Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549-3564. [CrossRef] [Google Scholar]
  10. Mishra, S., Jena, L., Tripathy, H. K., & Gaber, T. (2022). Prioritized and predictive intelligence of things enabled waste management model in smart and sustainable environment. PloS one, 17(8), e0272383. [CrossRef] [PubMed] [Google Scholar]
  11. Khan, Imran, and Zobaidul Kabir. "Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment." Renewable Energy 150 (2020): 320-333. [CrossRef] [Google Scholar]
  12. Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646, 414327. [CrossRef] [Google Scholar]
  13. Yetilmezsoy, K., Ozkaya, B., & Cakmakci, M. (2011). Artificial intelligence-based prediction models for environmental engineering. Neural Network World, 21(3). [Google Scholar]
  14. Ayodele, T. R., A.S.O. Ogunjuyigbe, and M.A. Alao. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria." Applied energy 201 (2017): 200-218. [CrossRef] [Google Scholar]
  15. Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259-262. [Google Scholar]
  16. Muhammad, R., Mahboob, M., Mustafa, K., Khan, M., Musaddiq, S., & Mahboob, R. M. S. (2022). Artificial Intelligence in Waste Management/Wastewater Treatment. In Omics for Environmental Engineering and Microbiology Systems (pp. 493-507). CRC Press. [CrossRef] [Google Scholar]
  17. Tabasová, Andrea, Jiří Kropáč, Vít Kermes, Andreja Nemet, and Petr Stehlík. "Waste-to-energy technologies: Impact on environment." Energy 44.1 (2012): 146-155. [CrossRef] [Google Scholar]
  18. Khalil, Munawar, Mohammed Ali Berawi, Rudi Heryanto, and Akhmad Rizalie. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia." Renewable and Sustainable Energy Reviews 105 (2019): 323-331. [CrossRef] [Google Scholar]
  19. Pavlas, Martin, Michal Touš, Ladislav Bébar, and Petr Stehlík. "Waste to energy-An evaluation of the environmental impact." Applied Thermal Engineering 30.16 (2010): 2326-2332. [CrossRef] [Google Scholar]
  20. Zahedi, Rahim, Sareh Daneshgar, and Sina Golivari. "Simulation and optimization of electricity generation by waste to energy unit in Tehran." Sustainable Energy Technologies and Assessments 53 (2022): 102338. [CrossRef] [Google Scholar]
  21. Chen, Heng, Meiyan Zhang, Kai Xue, Gang Xu, Yongping Yang, Zepeng Wang, Wenyi Liu, and Tong Liu. "An innovative waste-to-energy system integrated with a coal-fired power plant." Energy 194 (2020): 116893. [CrossRef] [Google Scholar]
  22. Abdallah, Mohamed, Manar Abu Talib, Sainab Feroz, Qassim Nasir, Hadeer Abdalla, and Bayan Mahfood."Artificial intelligence applications in solid waste management: A systematic research review." Waste Management 109 (2020): 231-246. [CrossRef] [Google Scholar]
  23. Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831-43845. [CrossRef] [Google Scholar]
  24. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98-102. [Google Scholar]
  25. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482. [CrossRef] [Google Scholar]
  26. Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z., & & Galal, A. M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113. [CrossRef] [Google Scholar]
  27. Shahab, Sana, and Mohd Anjum. "Solid waste management scenario in india and illegal dump detection using deep learning: an AI approach towards the sustainable waste management." Sustainability 14.23 (2022): 15896. [CrossRef] [Google Scholar]
  28. Ihsanullah, I., Gulzar Alam, Arshad Jamal, and Feroz Shaik. "Recent advances in applications of artificial intelligence in solid waste management: A review." Chemosphere (2022): 136631. [CrossRef] [PubMed] [Google Scholar]
  29. Abeygunawardhana, A. G. D. T., R. M. M. M. Shalinda, W. H. M. D. Bandara, W. D. S. Anesta, Dharshana Kasthurirathna, and Lasantha Abeysiri. "AI-driven smart bin for waste management." 2020 2nd International Conference on Advancements in Computing (ICAC). Vol. 1. IEEE, 2020. [Google Scholar]
  30. Andeobu, Lynda, Santoso Wibowo, and Srimannarayana Grandhi. "Artificial intelligence applications for sustainable solid waste management practices in Australia: A systematic review." Science of The Total Environment 834 (2022): 155389. [CrossRef] [Google Scholar]
  31. Ramakrishna, G., Naik, R., Nagabhushana, H., Basavaraj, R. B., Prashantha, S. C., Sharma, S. C., & Anantharaju, K. S. (2016). White light emission and energy transfer (Dy3+→ Eu3+) in combustion synthesized YSO: Dy3+, Eu3+ nanophosphors. Optik, 127(5), 2939-2945. [CrossRef] [Google Scholar]
  32. Udupi, P. K., Jose, M., & Ullah, A. (2024). AI-Enabled Smart City Waste Management System. In Handbook of Artificial Intelligence for Smart City Development (pp. 76-99). CRC Press. [CrossRef] [Google Scholar]
  33. Jisha, P. K., Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., & & Premkumar, H.B. (2015). Facile combustion synthesized orthorhombic GdAlO3: Eu3+ nanophosphors: Structural and photoluminescence properties for WLEDs. Journal of Luminescence, 163, 47-54. [CrossRef] [Google Scholar]
  34. Ramkumar, M., Babu, C. G., Kumar, K. V., Hepsiba, D., Manjunathan, A., & Kumar, R. S. (2021, March). ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks. In Journal of Physics: Conference Series (Vol. 1831, No. 1, p. 012015). IOP Publishing. [CrossRef] [Google Scholar]
  35. Bagherzadeh, F., Mehrani, M. J., Basirifard, M., & Roostaei, J. (2021). Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various Water Process Engineering, 41, 102033. [Google Scholar]
  36. Akshatha, S., Sreenivasa, S., Parashuram, L., Alharthi, F. A., & Rao, T. M. C. (2021). Microwave assisted green synthesis of p-type Co3O4@ Mesoporous carbon spheres for simultaneous degradation of dyes and photocatalytic hydrogen evolution reaction. Materials Science in Semiconductor Processing, 121, 105432. [CrossRef] [Google Scholar]
  37. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., & & Girish, K.M. (2015). A single phase, red emissive Mg2SiO4: Sm3+ nanophosphor prepared via rapid propellant combustion route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 516-523. [Google Scholar]
  38. Akshatha, S., Sreenivasa, S., Parashuram, L., Kumar, V. U., Sharma, S. C., Nagabhushana, H., & & Maiyalagan, T. (2019). Synergistic effect of hybrid Ce3+/Ce4+ doped Bi2O3 nano-sphere photocatalyst for enhanced photocatalytic degradation of alizarin red S dye and its NUV excited photoluminescence studies. Journal of Environmental Chemical Engineering, 7(3), 103053. [CrossRef] [Google Scholar]
  39. Patil, S., & Anandhi, R. J. (2020). Diversity based self-adaptive clusters using PSO clustering for crime data. International Journal of Information Technology, 12(2), 319-327. [CrossRef] [Google Scholar]
  40. Sinthiya, Nusrat Jahan, Tanvir Ahmed Chowdhury, and AKM Bahalul Haque. "Artificial Intelligence Based Smart Waste Management—A Systematic Review." Computational Intelligence Techniques for Green Smart Cities (2022): 67-92. [CrossRef] [Google Scholar]
  41. Munir, Muhammad Tajammal, Bing Li, and Muhammad Naqvi. "Revolutionizing municipal solid waste management (MSWM) with machine learning as a clean resource: Opportunities, challenges and solutions." Fuel 348 (2023): 128548. [CrossRef] [Google Scholar]
  42. Kuzhin, Marat F., Abhishek Joshi, Vaibhav Mittal, Monika Khatkar, and Ugur Guven. "Optimizing Waste Management through IoT and Analytics: A Case Study Using the Waste Management Optimization Test." In BIO Web of Conferences, vol. 86, p. 01090. EDP Sciences, 2024. [CrossRef] [EDP Sciences] [Google Scholar]
  43. Namoun, A., Hussein, B. R., Tufail, A., Alrehaili, A., Syed, T. A., & BenRhouma, O. (2022). An ensemble learning based classification approach for the prediction of household solid waste generation. Sensors, 22(9), 3506. [CrossRef] [PubMed] [Google Scholar]
  44. Hossain, Imran, A.K.M. Haque, and S.M. Ullah. "Assessing sustainable waste management practices in Rajshahi City Corporation: an analysis for local government enhancement using IoT, AI, and Android technology." Environmental Science and Pollution Research (2024): 1-19. [Google Scholar]
  45. Naik, R., Prashantha, S. C., & Nagabhushana, H. (2017). Effect of Li+ codoping on structural and luminescent properties of Mg2SiO4: RE3+ (RE= Eu, Tb) nanophosphors for displays and eccrine latent fingerprint detection. Optical Materials, 72, 295-304. [CrossRef] [Google Scholar]
  46. Boudanga, Zineb, and Hicham Medromi. "An innovative medical waste management system in a smart city using XAI and vehicle routing optimization." F1000Research 12 (2023). [Google Scholar]
  47. Mao, Wei-Lung, Wei-Chun Chen, Chien-Tsung Wang, and Yu-Hao Lin. "Recycling waste classification using optimized convolutional neural network." Resources, Conservation and Recycling 164 (2021): 105132. [CrossRef] [Google Scholar]
  48. Gupta, Abhishek, Michel Joop van der Schoor, Jacob Bräutigam, Valeria Bladinieres Justo, Tobias Fritz Umland, and Dietmar Göhlich. "Autonomous service robots for urban waste management-multiagent route planning and cooperative operation." IEEE Robotics and Automation Letters 7, no. 4 (2022): 8972-8979. [CrossRef] [Google Scholar]
  49. Alfeo, Antonio Luca, Eduardo Castelló Ferrer, Yago Lizarribar Carrillo, Arnaud Grignard, Luis Alonso Pastor, Dylan T. Sleeper, Mario GCA Cimino et al. "Urban approach for autonomous waste management." In 2019 International Conference on Robotics and Automation (ICRA), pp. 4233-4240. IEEE, 2019. [CrossRef] [Google Scholar]
  50. Canale, Eduard Valentin, Dãnuț Iulian Stanciu, Dan Dumitriu, and Cornel Mircea Brișan. "Control of an Autonomous Mobile Waste Collection Robot." In Proceedings of the International Conference of Mechatronics and Cyber-MixMechatronics-2019, vol. 85, p. 51. Springer, 2019. [Google Scholar]
  51. Lindgren, Billy, and Giancarlo Kuosmanen. "An Autonomous Robot for Collecting Waste Bins in an Office Environment." (2018). [Google Scholar]
  52. Uzun, Süleyman, and Dilara Karaca. "Deep learning based garbage detection for autonomous garbage collection vehicles." Avrupa Bilim ve Teknoloji Dergisi 32 (2022): 1194-1198. [Google Scholar]
  53. Band, Shahab S., Saeid Janizadeh, Subodh Chandra Pal, Indrajit Chowdhuri, Zhaleh Siabi, Akbar Norouzi, Assefa M. Melesse, Manouchehr Shokri, and Amirhosein Mosavi. "Comparative analysis of artificial intelligence models for accurate estimation of groundwater nitrate concentration." Sensors 20, no. 20 (2020): 5763. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.