Open Access
Issue |
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
|
|
---|---|---|
Article Number | 01054 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/e3sconf/202455201054 | |
Published online | 23 July 2024 |
- Davis, P.; Sanchez-Martinez, M. Economic Theories of Poverty the Research. 2015. Available [Google Scholar]
- Davids, Y.D.; Gouws, A. Explaining Poverty: A Comparison between Perceptions and Conditions of Poverty in South Africa. 2010. [Google Scholar]
- Karuppusamy, L., Ravi, J., Dabbu, M., & Lakshmanan, S. (2022). Chronological salp swarm algorithm based deep belief network for intrusion detection in cloud using fuzzy entropy. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 35(1), e2948. [CrossRef] [Google Scholar]
- Mhlanga, D. Financial Inclusion and Poverty Reduction: Evidence from Small Scale Agricultural Sector in Manicaland Province of Zimbabwe. 2020 [Google Scholar]
- Davis, P.; Sanchez-Martinez, M.A. Review of the Economic Theories of Poverty. National Institute of Economic and Social Science. 2014. [Google Scholar]
- Mhlanga, D.; Ndhlovu, E. Socio-economic Implications of the COVID-19 for Smallholder Livelihoods in Zimbabwe. Preprints 2020. [Google Scholar]
- Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., & & Girish, K.M. (2015). A single phase, red emissive Mg2SiO4: Sm3+ nanophosphor prepared via rapid propellant combustion route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 516-523. [Google Scholar]
- Guterres, A. Report of the Secretary-General on SDG Progress 2019: Special Edition; United Nations Publications: Herndon, VA, USA, 2019; pp. 1-64. [Google Scholar]
- Jisha, P. K., Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., & & Premkumar, H.B. (2015). Facile combustion synthesized orthorhombic GdAlO3: Eu3+ nanophosphors: Structural and photoluminescence properties for WLEDs. Journal of Luminescence, 163, 47-54. [CrossRef] [Google Scholar]
- Ramkumar, M., Babu, C. G., Kumar, K. V., Hepsiba, D., Manjunathan, A., & Kumar, R. S. (2021, March). ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks. In Journal of Physics: Conference Series (Vol. 1831, No. 1, p. 012015). IOP Publishing. [CrossRef] [Google Scholar]
- Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549-3564. [CrossRef] [Google Scholar]
- Suji Prasad, S. J., Thangatamilan, M., Suresh, M., Panchal, H., Rajan, C. A., Sagana, C., & & Sadasivuni, K.K. (2022). An efficient LoRa-based smart agriculture management and monitoring system using wireless sensor networks. International Journal of Ambient Energy, 43(1), 5447-5450. [CrossRef] [Google Scholar]
- World Bank. Poverty Overview; World Bank: Washington, DC, USA, 2019. [Google Scholar] [CrossRef] [Google Scholar]
- Moffitt, R.A.; Danziger, S.H.; Haveman, R.H. Understanding Poverty. Ind. Labour Relat. Rev. 2019, 57, 469. [Google Scholar]
- Mhlanga, D. Industry 4.0: The Challenges Associated with the Digital Transformation of Education in South Africa. In The Impacts of Digital Transformation; Aydın, O., Ed.; Efe Academy: İstanbul, Turkey, 2020; pp. 13-26. ISBN 978605-06499-1-8. e-ISBN: 978-605-06499-0-1344230555_. [Google Scholar]
- Dharmaraj, V.; Vijayanand, C. Artificial Intelligence (AI) in Agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2122-2128. [CrossRef] [Google Scholar]
- Vincent, D.R.; Deepa, N.; Elavarasan, D.; Srinivasan, K.; Chauhdary, S.H.; Iwendi, C. Sensors drove ai-based agriculture recommendation model for assessing land suitability. Sensors 2019, 19, 3667. [CrossRef] [PubMed] [Google Scholar]
- Werners, S.E.; Wise, R.M.; Butler, J.R.A.; Totin, E.; Vincent, K. Adaptation pathways: A review of approaches and a learning framework. Environ. Sci. Policy 2021, 116, 266-275. [Google Scholar] [CrossRef] [CrossRef] [Google Scholar]
- Akshatha, S., Sreenivasa, S., Parashuram, L., Kumar, V. U., Sharma, S. C., Nagabhushana, H., & & Maiyalagan, T. (2019). Synergistic effect of hybrid Ce3+/Ce4+ doped Bi2O3 nano-sphere photocatalyst for enhanced photocatalytic degradation of alizarin red S dye and its NUV excited photoluminescence studies. Journal of Environmental Chemical Engineering, 7(3), 103053. [CrossRef] [Google Scholar]
- Ramakrishna, G., Naik, R., Nagabhushana, H., Basavaraj, R. B., Prashantha, S. C., Sharma, S. C., & Anantharaju, K. S. (2016). White light emission and energy transfer (Dy3+→ Eu3+) in combustion synthesized YSO: Dy3+, Eu3+ nanophosphors. Optik, 127(5), 2939-2945. [CrossRef] [Google Scholar]
- Leach, M.; Scoones, I.; Stirling, A. Pathways to Sustainability: An Overview of the STEPS Centre Approach. 2007. [Google Scholar]
- Akshatha, S., Sreenivasa, S., Parashuram, L., Alharthi, F. A., & Rao, T. M. C. (2021). Microwave assisted green synthesis of p-type Co3O4@ Mesoporous carbon spheres for simultaneous degradation of dyes and photocatalytic hydrogen evolution reaction. Materials Science in Semiconductor Processing, 121, 105432. [CrossRef] [Google Scholar]
- Maru, Y.T.; Sparrow, A.; Butler, J.R.; Banerjee, O.; Ison, R.; Hall, A.; Carberry, P. Towards appropriate mainstreaming of ‘Theory of Change’ approaches into agricultural research for development: Challenges and opportunities. Agric. Syst. 2018, 165, 344-353. [CrossRef] [Google Scholar]
- Patil, S., & Anandhi, R. J. (2020). Diversity based self-adaptive clusters using PSO clustering for crime data. International Journal of Information Technology, 12(2), 319-327. [CrossRef] [Google Scholar]
- Omore, A.; Kidoido, M.; Twine, E.; Kurwijila, L.; O’Flynn, M.; Githinji, J. Using ‘theory of change’ to improve agricultural research: Recent experience from Tanzania. Dev. Pract. 2019, 29, 898-911. [CrossRef] [Google Scholar]
- Haasnoot, M.; Kwakkel, J.H.; Walker, W.E.; Maat, J.T. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Chang. 2013, 23, 485-498. [CrossRef] [Google Scholar]
- Wise, R.M.; Fazey, I.; Smith, M.S.; Park, S.E.; Eakin, H.C.; Van Garderen, E.A.; Campbell, B. Reconceptualising adaptation to climate change as part of pathways of change and response. Glob. Environ. Chang. 2014, 28, 325-336. [CrossRef] [Google Scholar]
- Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831-43845. [CrossRef] [Google Scholar]
- Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98-102. [Google Scholar]
- Bosomworth, K.; Leith, P.; Harwood, A.; Wallis, P.J. What’s the problem in adaptation pathways planning? The potential of a diagnostic problem-structuring approach. Environ. Sci. Policy 2017, 76, 23-28. [CrossRef] [Google Scholar]
- Munene, M.B.; Swartling, Å.G.; Thomalla, F. Adaptive governance as a catalyst for transforming the relationship between development and disaster risk through the Sendai Framework? Int. J. Disaster Risk Reduct. 2018, 28, 653-663. [CrossRef] [Google Scholar]
- Naik, R., Prashantha, S. C., & Nagabhushana, H. (2017). Effect of Li+ codoping on structural and luminescent properties of Mg2SiO4: RE3+ (RE= Eu, Tb) nanophosphors for displays and eccrine latent fingerprint detection. Optical Materials, 72, 295-304. [CrossRef] [Google Scholar]
- Roy, J.; Tscharket, P.; Waisman, H.; Abdul Halim, S.; Antwi-Agyei, P.; Dasgupta, P.; Hayward, B.; Kanninen, M.; Liverman, D.; Okereke, C.; et al. Sustainable development, poverty eradication and reducing inequalities. In Global Warming of 1.5 °C: An IPCC Sp.; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Werners, S.E.; Pfenninger, S.; van Slobbe, E.; Haasnoot, M.; Kwakkel, J.H.; Swart, R.J. Thresholds, tipping and turning points for sustainability under climate change. Curr. Opin. Environ. Sustain. 2013, 5, 334-340. [CrossRef] [Google Scholar]
- Kwakkel, J.H.; Haasnoot, M.; Walker, W.E. Comparing Robust Decision-Making and Dynamic Adaptive Policy Pathways for model-based decision support under deep uncertainty. Environ. Model. Softw. 2016, 86, 168-183. [CrossRef] [Google Scholar]
- Butler, J.R.A.; Bohensky, E.L.; Suadnya, W.; Yanuartati, Y.; Handayani, T.; Habibi, P.; Puspadi, K.; Skewes, T.D.; Wise, R.M.; Suharto, I.; et al. Scenario planning to leap-frog the Sustainable Development Goals: An adaptation pathways approach. Clim. Risk Manag. 2016, 12, 83-99. [CrossRef] [Google Scholar]
- Reeder, T.; Ranger, N. How Do You Adapt in an Uncertain World?: Lessons from the Thames Estuary 2100 Project; Washington DC, USA, 2011. [Google Scholar]
- Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482. [CrossRef] [Google Scholar]
- Colloff, M.J.; Doherty, M.D.; Lavorel, S.; Dunlop, M.; Wise, R.M.; Prober, S.M. Adaptation services and pathways for the management of temperate montane forests under transformational climate change. Clim. Chang. 2016, 138, 267-282. [CrossRef] [Google Scholar]
- Downing, T.E. Views of the frontiers in climate change adaptation economics. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 161-170. [CrossRef] [Google Scholar]
- Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z., & & Galal, A.M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113. [CrossRef] [Google Scholar]
- Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X., & & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686. [CrossRef] [Google Scholar]
- Hermans, L.M.; Haasnoot, M.; Maat, J.T.; Kwakkel, J.H. Designing monitoring arrangements for collaborative learning about adaptation pathways. Environ. Sci. Policy 2017, 69, 29-38. [CrossRef] [Google Scholar]
- USAID. Adapting to Coastal Climate Change: A Guidebook for Development Planners. 2009. [Google Scholar]
- Jeuken, A.; Haasnoot, M.; Reeder, T.; Ward, P. Lessons learnt from adaptation planning in four deltas and coastal cities. J. Water Clim. Chang. 2015, 6, 711-728. [CrossRef] [Google Scholar]
- Nikkels, M.J.; Kumar, S.; Meinke, H. Adaptive Irrigation Infrastructure—Linking Insights from Human-Water Interactions and Adaptive Pathways. Curr. Opin. Environ. Sustain. 2019, 40, 37-42. [CrossRef] [Google Scholar]
- Makhoul, N. Review of data quality indicators and metrics, and suggestions for indicators and metrics for structural health monitoring. Adv. Bridg. Eng. 2022, 3, 17. [CrossRef] [Google Scholar]
- Makhoul, N. Bayesian Decision-Making Process Including Structural Health Monitoring Data Quality for Bridge Management. KSCE J. Civ. Eng. 2023. submitted. [Google Scholar]
- WCED. Our Common Future: Report of the World Commission on Environment and Development. Oxford. 1987. [Google Scholar]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681-695. [Google Scholar] [CrossRef].; [CrossRef] [Google Scholar]
- Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003, 19, 733-752. [CrossRef] [Google Scholar]
- Nan, C.; Sansavini, G. A quantitative method for assessing resilience of interdependent infrastructures. Reliab. Eng. Syst. Saf. 2017, 157, 35-53. [CrossRef] [Google Scholar]
- Indira, D. N. V. S. L. S., Ganiya, R.K., Ashok Babu, P., Xavier, A., Kavisankar, L., Hemalatha, S., & & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
- Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
- Patriarca, R.; Bergström, J.; Di Gravio, G.; Costantino, F. Resilience engineering: Current status of the research and future challenges. Saf. Sci. 2018, 102, 79-100. [CrossRef] [Google Scholar]
- Ayyub, B.M. Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making. Risk Anal. 2014, 34, 340-355. [CrossRef] [PubMed] [Google Scholar]
- Ayyub, B.M. Practical Resilience Metrics for Planning, Design, and Decision Making. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2015, 1, 04015008. [CrossRef] [Google Scholar]
- Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259-262. [Google Scholar]
- Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646, 414327. [CrossRef] [Google Scholar]
- Cimellaro, G.; Reinhorn, A.; Bruneau, M. Quantification of seismic resilience. In Proceedings of the 8th U.S. National Conference on Earthquake Engineering, San Francisco, CA, USA, 18-22 April 2006. [Google Scholar]
- Reed, D. A.; Kapur, K.C.; Christie, R.D. Methodology for Assessing the Resilience of Networked Infrastructure. IEEE Syst. J. 2009, 3, 174-180 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.