Open Access
Issue
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
Article Number 01059
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202455201059
Published online 23 July 2024
  1. Zeng, Xiangfeng, Xijuan Chen, and Jie Zhuang. "The positive relationship between ocean acidification and pollution." Marine Pollution Bulletin 91, 1 (2015): 14–21. [CrossRef] [PubMed] [Google Scholar]
  2. Schönberg, Christine HL, James KH Fang, Marina Carreiro-Silva, Aline Tribollet, and Max Wisshak. "Bioerosion: the other ocean acidification problem." ICES Journal of Marine Science 74, 4 (2017): 895–925. [CrossRef] [Google Scholar]
  3. Das, Surajit, and Neelam Mangwani. "Ocean acidification and marine microorganisms: responses and consequences." Oceanologia 57, 4 (2015): 349–361. [CrossRef] [Google Scholar]
  4. Falkenberg, Laura J., Richard GJ Bellerby, Sean D. Connell, Lora E. Fleming, Bruce Maycock, Bayden D. Russell, Francis J. Sullivan, and Sam Dupont. "Ocean acidification and human health." International Journal of Environmental Research and Public Health 17, 12 (2020): 4563. [CrossRef] [PubMed] [Google Scholar]
  5. Pan, T-C. Francis, Scott L. Applebaum, and Donal T. Manahan. "Experimental ocean acidification alters the allocation of metabolic energy." Proceedings of the National Academy of Sciences 112, 15 (2015): 4696–4701. [CrossRef] [PubMed] [Google Scholar]
  6. Mathis, J. T., S.R. Cooley, N. Lucey, S. Colt, J. Ekstrom, T. Hurst, C. Hauri, W. Evans, J. N. Cross, and R. A. Feely. "Ocean acidification risk assessment for Alaska’s fishery sector." Progress in Oceanography 136 (2015): 71–91. [CrossRef] [Google Scholar]
  7. Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831–43845. [CrossRef] [Google Scholar]
  8. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98–102. [Google Scholar]
  9. Alava, Juan José, William WL Cheung, Peter S. Ross, and U. Rashid Sumaila. "Climate change-contaminant interactions in marine food webs: Toward a conceptual framework." Global change biology 23, 10 (2017): 3984–4001. [CrossRef] [PubMed] [Google Scholar]
  10. Lynam, Christopher Philip, Marcos Llope, Christian Möllmann, Pierre Helaouët, Georgia Anne Bayliss-Brown, and Nils C. Stenseth. "Interaction between top-down and bottom-up control in marine food webs." Proceedings of the National Academy of Sciences 114, 8 (2017): 1952–1957. [CrossRef] [PubMed] [Google Scholar]
  11. Kortsch, Susanne, Raul Primicerio, Maria Fossheim, Andrey V. Dolgov, and Michaela Aschan. "Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists." Proceedings of the Royal Society B: Biological Sciences 282, 1814 (2015): 20151546. [CrossRef] [PubMed] [Google Scholar]
  12. Setälä, Outi, Maiju Lehtiniemi, Rachel Coppock, and Matthew Cole. "Microplastics in marine food webs." In Microplastic contamination in aquatic environments, (2018): 339–363. Elsevier, [CrossRef] [Google Scholar]
  13. Chouvelon, Tiphaine, Emilie Strady, Mireille Harmelin-Vivien, Olivier Radakovitch, Christophe Brach-Papa, Sylvette Crochet, Joel Knoery et al. "Patterns of trace metal bioaccumulation and trophic transfer in a phytoplankton-zooplankton-small pelagic fish marine food web." Marine Pollution Bulletin 146 (2019): 1013–1030. [CrossRef] [PubMed] [Google Scholar]
  14. Zhang, Feng, Xiaohui Wang, Jiayi Xu, Lixin Zhu, Guyu Peng, Pei Xu, and Daoji Li. "Food-web transfer of microplastics between wild caught fish and crustaceans in East China Sea." Marine Pollution Bulletin 146 (2019): 173–182. [CrossRef] [PubMed] [Google Scholar]
  15. Hancock, Alyce M., Catherine K. King, Jonathan S. Stark, Andrew McMinn, and Andrew T. Davidson. "Effects of ocean acidification on Antarctic marine organisms: A meta‐analysis." Ecology and Evolution 10, 10 (2020): 4495–4514. [CrossRef] [PubMed] [Google Scholar]
  16. Hussherr, Rachel, Maurice Levasseur, Martine Lizotte, Jean-Éric Tremblay, Jacoba Mol, Helmuth Thomas, Michel Gosselin et al. "Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions." Biogeosciences 14, 9 (2017): 2407–2427. [CrossRef] [Google Scholar]
  17. Sala, M. Montserrat, Francisco Luis Aparicio, Vanessa Balagué, Julia A. Boras, Encarnación Borrull, Clara Cardelús, Lluïsa Cros et al. "Contrasting effects of ocean acidification on the microbial food web under different trophic conditions." ICES Journal of Marine Science 73, 3 (2016): 670–679. [CrossRef] [Google Scholar]
  18. Suji Prasad, S. J., Thangatamilan, M., Suresh, M., Panchal, H., Rajan, C. A., Sagana, C., & & Sadasivuni, K.K. (2022). An efficient LoRa-based smart agriculture management and monitoring system using wireless sensor networks. International Journal of Ambient Energy, 43(1), 5447–5450. [CrossRef] [Google Scholar]
  19. Akshatha, S., Sreenivasa, S., Parashuram, L., Alharthi, F. A., & Rao, T. M. C. (2021). Microwave assisted green synthesis of p-type Co3O4@ Mesoporous carbon spheres for simultaneous degradation of dyes and photocatalytic hydrogen evolution reaction. Materials Science in Semiconductor Processing, 121, 105432. [CrossRef] [Google Scholar]
  20. Patil, S., & Anandhi, R. J. (2020). Diversity based self-adaptive clusters using PSO clustering for crime data. International Journal of Information Technology, 12(2), 319–327. [CrossRef] [Google Scholar]
  21. Zark, Maren, Ulf Riebesell, and Thorsten Dittmar. "Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms." Science Advances 1, 9 (2015): e1500531. [CrossRef] [PubMed] [Google Scholar]
  22. Bergen, Benjamin, Sonja Endres, Anja Engel, Maren Zark, Thorsten Dittmar, Ulrich Sommer, and Klaus Jürgens. "Acidification and warming affect prominent bacteria in two seasonal phytoplankton bloom mesocosms." Environmental microbiology 18, 12 (2016): 4579–4595. [CrossRef] [PubMed] [Google Scholar]
  23. Deppeler, Stacy, Katherina Petrou, Kai G. Schulz, Karen Westwood, Imojen Pearce, John McKinlay, and Andrew Davidson. "Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO 2 tolerance in phytoplankton productivity." Biogeosciences 15, 1 (2018): 209–231. [CrossRef] [Google Scholar]
  24. Ramkumar, M., Babu, C. G., Kumar, K. V., Hepsiba, D., Manjunathan, A., & Kumar, R. S. (2021, March). ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks. In Journal of Physics: Conference Series (Vol. 1831, No. 1, p. 012015). IOP Publishing. [CrossRef] [Google Scholar]
  25. Karuppusamy, L., Ravi, J., Dabbu, M., & Lakshmanan, S. (2022). Chronological salp swarm algorithm based deep belief network for intrusion detection in cloud using fuzzy entropy. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 35(1), e2948. [CrossRef] [Google Scholar]
  26. Priyadarshi, Anupam, Ram Chandra, Michio J. Kishi, S. Lan Smith, and Hidekatsu Yamazaki. "Understanding plankton ecosystem dynamics under realistic micro-scale variability requires modeling at least three trophic levels." Ecological Modelling 467 (2022): 109936. [CrossRef] [Google Scholar]
  27. Ricci, Pasquale, Roberto Carlucci, Francesca Capezzuto, Angela Carluccio, Giulia Cipriano, Gianfranco D’Onghia, Porzia Maiorano, Letizia Sion, Angelo Tursi, and Simone Libralato. "Contribution of intermediate and high trophic level species to benthic-pelagic coupling: Insights from modelling analysis." Frontiers in Marine Science 9 (2022): 887464. [CrossRef] [Google Scholar]
  28. Taipale, Sami Johan, Anne‐Mari Ventelä, Jaakko Litmanen, and Lauri Anttila. "Poor nutritional quality of primary producers and zooplankton driven by eutrophication is mitigated at upper trophic levels." Ecology and Evolution 12, 3 (2022): e8687. [CrossRef] [PubMed] [Google Scholar]
  29. Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259–262. [Google Scholar]
  30. Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646, 414327. [CrossRef] [Google Scholar]
  31. Décima, Moira. "Zooplankton trophic structure and ecosystem productivity." Marine Ecology Progress Series 692 (2022): 23–42. [CrossRef] [Google Scholar]
  32. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482. [CrossRef] [Google Scholar]
  33. Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z., & & Galal, A.M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail 102113. [Google Scholar]
  34. Steinberg, Deborah K., and Michael R. Landry. "Zooplankton and the ocean carbon cycle." Annual review of marine science 9 (2017): 413–444. [CrossRef] [PubMed] [Google Scholar]
  35. Valls, Audrey, Marta Coll, and Villy Christensen. "Keystone species: toward an operational concept for marine biodiversity conservation." Ecological Monographs 85, 1 (2015): 29–47. [CrossRef] [Google Scholar]
  36. Shukla, Ishana, Kaitlyn M. Gaynor, Boris Worm, and Chris T. Darimont. "The diversity of animals identified as keystone species." Ecology and Evolution 13, 10 (2023): e10561. [CrossRef] [PubMed] [Google Scholar]
  37. Zimmer, Richard K., Graham A. Ferrier, Steven J. Kim, Rachel R. Ogorzalek Loo, Cheryl Ann Zimmer, and Joseph A. Loo. "Keystone predation and molecules of keystone significance." Ecology 98, 6 (2017): 1710–1721. [CrossRef] [PubMed] [Google Scholar]
  38. Rasher, Douglas B., Robert S. Steneck, Jochen Halfar, Kristy J. Kroeker, Justin B. Ries, M. Tim Tinker, Phoebe TW Chan et al. "Keystone predators govern the pathway and pace of climate impacts in a subarctic marine ecosystem." Science 369, 6509 (2020): 1351–1354. [CrossRef] [PubMed] [Google Scholar]
  39. Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
  40. Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549–3564. [CrossRef] [Google Scholar]
  41. Citadin, Monica, Tânia M. Costa, and Sérgio A. Netto. "Response of estuarine meiofauna communities to shifts in spatial distribution of keystone species: An experimental approach." Estuarine, coastal and shelf science, 212 (2018): 365–371. [CrossRef] [Google Scholar]
  42. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X., & & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686. [CrossRef] [Google Scholar]
  43. Indira, D. N. V. S. L. S., Ganiya, R.K., Ashok Babu, P., Xavier, A., Kavisankar, L., Hemalatha, S., & & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  44. Naik, R., Prashantha, S. C., & Nagabhushana, H. (2017). Effect of Li+ codoping on structural and luminescent properties of Mg2SiO4: RE3+ (RE= Eu, Tb) nanophosphors for displays and eccrine latent fingerprint detection. Optical Materials, 72, 295–304. [CrossRef] [Google Scholar]
  45. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., & & Girish, K.M. (2015). A single phase, red emissive Mg2SiO4: Sm3+ nanophosphor prepared via rapid propellant combustion route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 516–523. [Google Scholar]
  46. Akshatha, S., Sreenivasa, S., Parashuram, L., Kumar, V. U., Sharma, S. C., Nagabhushana, H., & & Maiyalagan, T. (2019). Synergistic effect of hybrid Ce3+/Ce4+ doped Bi2O3 nano-sphere photocatalyst for enhanced photocatalytic degradation of alizarin red S dye and its NUV excited photoluminescence studies. Journal of Environmental Chemical Engineering, 7(3), 103053. [CrossRef] [Google Scholar]
  47. Ramakrishna, G., Naik, R., Nagabhushana, H., Basavaraj, R. B., Prashantha, S. C., Sharma, S. C., & Anantharaju, K. S. (2016). White light emission and energy transfer (Dy3+→ Eu3+) in combustion synthesized YSO: Dy3+, Eu3+ nanophosphors. Optik, 127(5), 2939–2945. [CrossRef] [Google Scholar]
  48. Jisha, P. K., Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., & & Premkumar, H.B. (2015). Facile combustion synthesized orthorhombic GdAlO3: Eu3+ nanophosphors: Structural and photoluminescence properties for WLEDs. Journal of Luminescence, 163, 47–54. [CrossRef] [Google Scholar]
  49. Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., & & Gattuso, J.P. (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global change biology, 19(6), 1884–1896. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.