Open Access
Issue
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
Article Number 01060
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202455201060
Published online 23 July 2024
  1. Verma, Neeraj, Usha Kumari, Swati Mittal, and Ajay Kumar Mittal. "Scanning electron microscope investigation on the process of healing of skin wounds in Cirrhinus mrigala." Microscopy Research and Technique 80, 11 (2017): 1205–1214. [CrossRef] [PubMed] [Google Scholar]
  2. AlGheryafi, Zainab Fathi, Fatima Foud Alnasser, Fatima Hussain Almukhtar, Fatema Abdullatef Aldajani, Fatimah Hussain Al Qassim, Zainab Mohammed Al Zakaria, Shoq Obeid Alshammari, and Ritesh G. Menezes. "Differentiating suicide from homicide in sharp-force fatalities with stab and/or incised wounds: a scoping review." Legal Medicine 67 (2024): 102388. [CrossRef] [Google Scholar]
  3. Kumar, C. P., Raghu, M. S., Prathibha, B. S., Prashanth, M. K., Kanthimathi, G., Kumar, K. Y., & & Alharthi, F.A. (2021). Discovery of a novel series of substituted quinolines acting as anticancer agents and selective EGFR blocker: Molecular docking study. Bioorganic & Medicinal Chemistry Letters, 44, 128118. [CrossRef] [PubMed] [Google Scholar]
  4. Humphrey, Caitlin, Jaliya Kumaratilake, and Maciej Henneberg. "Characteristics of bone injuries resulting from knife wounds incised with different forces." Journal of forensic sciences 62, 6 (2017): 1445–1451. [CrossRef] [PubMed] [Google Scholar]
  5. Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z., & & Galal, A.M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113. [CrossRef] [Google Scholar]
  6. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X., & & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686. [CrossRef] [Google Scholar]
  7. Boateng, J., & Catanzano, O. (2015). Advanced therapeutic dressings for effective wound healing—a review. Journal of pharmaceutical sciences, 104(11), 3653–3680. [CrossRef] [PubMed] [Google Scholar]
  8. Akiki, Ronald K., and Raman Mehrzad. "Practical management of common skin injuries, lacerations, wounds, trigger fingers, and burns." The Journal of the American Board of Family Medicine 33, 5 (2020): 799–808. [Google Scholar]
  9. Fowler, Thomas R., Steven J. Crellin, and Marna Rayl Greenberg. "Detecting foreign bodies in a head laceration." Case Reports in Emergency Medicine 2015 (2015). [CrossRef] [Google Scholar]
  10. Junker, J. P., Kamel, R. A., Caterson, E. J., & Eriksson, E. (2013). Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Advances in wound care, 2(7), 348–356. [CrossRef] [PubMed] [Google Scholar]
  11. Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831–43845. [CrossRef] [Google Scholar]
  12. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98–102. [Google Scholar]
  13. Mamidi, N., García, R. G., Martínez, J. D. H., Briones, C. M., Martinez Ramos, A. M., Tamez, M. F. L., & & Segura, F.J.M. (2022). Recent advances in designing fibrous biomaterials for the domain of biomedical, clinical, and environmental applications. ACS Biomaterials Science & Engineering, 8(9), 3690–3716. [CrossRef] [PubMed] [Google Scholar]
  14. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482. [CrossRef] [Google Scholar]
  15. Koob, T. J., Lim, J. J., Massee, M., Zabek, N., & Denoziere, G. (2014). Properties of dehydrated human amnion/chorion composite grafts: implications for wound repair and soft tissue regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(6), 1353–1362. [CrossRef] [PubMed] [Google Scholar]
  16. Srinivasan, K., Porkumaran, K., & Sainarayanan, G. (2009, August). Improved background subtraction techniques for security in video applications. In 2009 3rd International Conference on Anti-counterfeiting, Security, and Identification in Communication (pp. 114–117). IEEE. [Google Scholar]
  17. Kožár, M., H. Hamilton, and J. Koščová. "Types of wounds and the prevalence of bacterial contamination of wounds in the clinical practice of small animals." Folia Veterinaria 62, no. 4 (2018): 39–47. [Google Scholar]
  18. Shrestha, Rijen, Kewal Krishan, and Tanuj Kanchan. "Abrasion." (2020). [Google Scholar]
  19. Liu, Jun, Chengju Xiao, Hanqing Wang, Yunxia Xue, Dong Dong, Cuipei Lin, Fang Song et al. "Local group 2 innate lymphoid cells promote corneal regeneration after epithelial abrasion." The American journal of pathology 187, 6 (2017): 1313–1326. [CrossRef] [PubMed] [Google Scholar]
  20. Nguyen, Hien Minh, Tam Thi Ngoc Le, An Thanh Nguyen, Han Nguyen Thien Le, and Thi Tan Pham. "Biomedical materials for wound dressing: Recent advances and applications." RSC advances 13, no. 8 (2023): 5509–5528. [CrossRef] [PubMed] [Google Scholar]
  21. Indira, D. N. V. S. L.S., Ganiya, R.K., Ashok Babu, P., Xavier, A., Kavisankar, L., Hemalatha, S., & & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  22. Zhang, X., Yao, D., Zhao, W., Zhang, R., Yu, B., Ma, G., & & Xu, F.J. (2021). Engineering platelet‐rich plasma based dual‐network hydrogel as a bioactive wound dressing with potential clinical translational value. Advanced Functional Materials, 31(8), 2009258. [CrossRef] [Google Scholar]
  23. Su, Jingjing, Jiankang Li, Jiaheng Liang, Kun Zhang, and Jingan Li. "Hydrogel preparation methods and biomaterials for wound dressing." Life 11, 10 (2021): 1016. [CrossRef] [PubMed] [Google Scholar]
  24. Moreira, Tatianne Dias, Vaniele Bugoni Martins, Afonso Henrique da SilvaJúnior, Claudia Sayer, Pedro Henrique Hermes de Araújo, and Ana Paula Serafini Immich. "New insights into biomaterials for wound dressings and care: Challenges and trends." Progress in Organic Coatings 187 (2024): 108118. [CrossRef] [Google Scholar]
  25. Wang, Fadong, Shui Hu, Qingxiu Jia, and Liqun Zhang. "Advances in electrospinning of natural biomaterials for wound dressing." Journal of Nanomaterials 2020 (2020): 1–14. [Google Scholar]
  26. Ashwini, S., Prashantha, S. C., Naik, R., & Nagabhushana, H. (2019). Enhancement of luminescence intensity and spectroscopic analysis of Eu3+ activated and Li+ charge-compensated Bi2O3 nanophosphors for solid-state lighting. Journal of Rare Earths, 37(4), 356–364. [CrossRef] [Google Scholar]
  27. Mir, Mariam, Murtaza Najabat Ali, Afifa Barakullah, Ayesha Gulzar, Munam Arshad, Shizza Fatima, and Maliha Asad. "Synthetic polymeric biomaterials for wound healing: a review." Progress in biomaterials 7 (2018): 1–21. [CrossRef] [PubMed] [Google Scholar]
  28. Su, Jingjing, Jiankang Li, Jiaheng Liang, Kun Zhang, and Jingan Li. "Hydrogel preparation methods and biomaterials for wound dressing." Life 11, 10 (2021): 1016. [CrossRef] [PubMed] [Google Scholar]
  29. Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
  30. Sugiarto, S., Leow, Y., Tan, C. L., Wang, G., & Kai, D. (2022). How far is Lignin from being a biomedical material?. Bioactive Materials, 8, 71–94. [CrossRef] [PubMed] [Google Scholar]
  31. Liu, X., Lin, T., Gao, Y., Xu, Z., Huang, C., Yao, G., & & Wang, X. (2012). Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100(6), 1556–1565. [CrossRef] [Google Scholar]
  32. Liang, Yuqing, Yongping Liang, Hualei Zhang, and Baolin Guo. "Antibacterial biomaterials for skin wound dressing." Asian Journal of Pharmaceutical Sciences 17, 3 (2022): 353–384. [CrossRef] [PubMed] [Google Scholar]
  33. Wang, Fadong, Shui Hu, Qingxiu Jia, and Liqun Zhang. "Advances in electrospinning of natural biomaterials for wound dressing." Journal of Nanomaterials 2020 (2020): 1–14. [Google Scholar]
  34. Manohar, T., Prashantha, S. C., Nagaswarupa, H. P., Naik, R., Nagabhushana, H., Anantharaju, K. S., & & Premkumar, H.B. (2017). White light emitting lanthanum aluminate nanophosphor: near ultra violet excited photoluminescence and photometric characteristics. Journal of Luminescence, 190, 279–288. [CrossRef] [Google Scholar]
  35. Kasiewicz, Lisa N., and Kathryn A. Whitehead. "Recent advances in biomaterials for the treatment of diabetic foot ulcers." Biomaterials science 5, 10 (2017): 1962–1975. [CrossRef] [PubMed] [Google Scholar]
  36. Zarei, Farshad, Babak Negahdari, and Ali Eatemadi. "Diabetic ulcer regeneration: stem cells, biomaterials, growth factors." Artificial cells, nanomedicine, and biotechnology 46, no. 1 (2018): 26–32. [CrossRef] [PubMed] [Google Scholar]
  37. Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549–3564. [CrossRef] [Google Scholar]
  38. Harkins, A. L., Duri, S., Kloth, L. C., & Tran, C. D. (2014). Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(6), 1199–1206. [Google Scholar]
  39. Zhang, Xiaoxuan, Jingjing Gan, Lu Fan, Zhiqiang Luo, and Yuanjin Zhao. "Bioinspired adaptable indwelling microneedles for treatment of diabetic ulcers." Advanced Materials 35, 23 (2023): 2210903. [CrossRef] [Google Scholar]
  40. Alven, Sibusiso, Sijongesonke Peter, Zintle Mbese, and Blessing A. Aderibigbe. "Polymer-based wound dressing materials loaded with bioactive agents: Potential materials for the treatment of diabetic wounds." Polymers 14, no. 4 (2022): 724. [CrossRef] [PubMed] [Google Scholar]
  41. Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259–262. [Google Scholar]
  42. Wu, J., Zheng, Y., Wen, X., Lin, Q., Chen, X., & Wu, Z. (2014). Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomedical materials, 9(3), 035005. [CrossRef] [PubMed] [Google Scholar]
  43. Swarna, K. S. V., Vinayagam, A., Ananth, M. B. J., Kumar, P. V., Veerasamy, V., & Radhakrishnan, P. (2022). A KNN based random subspace ensemble classifier for detection and discrimination of high impedance fault in PV integrated power network. Measurement, 187, 110333. [CrossRef] [Google Scholar]
  44. Bardill, James R., Melissa R. Laughter, Michael Stager, Kenneth W. Liechty, Melissa D. Krebs, and Carlos Zgheib. "Topical gel-based biomaterials for the treatment of diabetic foot ulcers." Acta biomaterialia 138 (2022): 73–91. [CrossRef] [PubMed] [Google Scholar]
  45. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., & & Girish, K.M. (2015). A single phase, red emissive Mg2SiO4: Sm3+ nanophosphor prepared via rapid propellant combustion route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 516–523. [Google Scholar]
  46. Mi, F. L., Wu, Y. B., Shyu, S. S., Schoung, J. Y., Huang, Y. B., Tsai, Y. H., & Hao, J. Y. (2002). Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 59(3), 438–449. [Google Scholar]
  47. Akshatha, S., Sreenivasa, S., Parashuram, L., Kumar, V. U., Sharma, S. C., Nagabhushana, H., & & Maiyalagan, T. (2019). Synergistic effect of hybrid Ce3+/Ce4+ doped Bi2O3 nano-sphere photocatalyst for enhanced photocatalytic degradation of alizarin red S dye and its NUV excited photoluminescence studies. Journal of Environmental Chemical Engineering, 7(3), 103053. [CrossRef] [Google Scholar]
  48. Silva, A. S., Costa, E. C., Reis, S., Spencer, C., Calhelha, R. C., Miguel, S. P., & & Coutinho, P. (2022). Silk sericin: A promising sustainable biomaterial for biomedical and pharmaceutical applications. Polymers, 14(22), 4931. [CrossRef] [PubMed] [Google Scholar]
  49. Ramakrishna, G., Naik, R., Nagabhushana, H., Basavaraj, R. B., Prashantha, S. C., Sharma, S. C., & Anantharaju, K. S. (2016). White light emission and energy transfer (Dy3+→ Eu3+) in combustion synthesized YSO: Dy3+, Eu3+ nanophosphors. Optik, 127(5), 2939–2945. [CrossRef] [Google Scholar]
  50. Jisha, P. K., Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., & & Premkumar, H.B. (2015). Facile combustion synthesized orthorhombic GdAlO3: Eu3+ nanophosphors: Structural and photoluminescence properties for WLEDs. Journal of Luminescence, 163, 47–54. [CrossRef] [Google Scholar]
  51. Evans, N. D., Oreffo, R. O., Healy, E., Thurner, P. J., & Man, Y. H. (2013). Epithelial mechanobiology, skin wound healing, and the stem cell niche. Journal of the mechanical behavior of biomedical materials, 28, 397–409. [CrossRef] [PubMed] [Google Scholar]
  52. Ramkumar, M., Babu, C. G., Kumar, K. V., Hepsiba, D., Manjunathan, A., & Kumar, R. S. (2021, March). ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks. In Journal of Physics: Conference Series (Vol. 1831, No. 1, p. 012015). IOP Publishing. [CrossRef] [Google Scholar]
  53. Karuppusamy, L., Ravi, J., Dabbu, M., & Lakshmanan, S. (2022). Chronological salp swarm algorithm based deep belief network for intrusion detection in cloud using fuzzy entropy. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 35(1), e2948. [CrossRef] [Google Scholar]
  54. Suji Prasad, S. J., Thangatamilan, M., Suresh, M., Panchal, H., Rajan, C. A., Sagana, C., & & Sadasivuni, K.K. (2022). An efficient LoRa-based smart agriculture management and monitoring system using wireless sensor networks. International Journal of Ambient Energy, 43(1), 5447–5450. [CrossRef] [Google Scholar]
  55. Akshatha, S., Sreenivasa, S., Parashuram, L., Alharthi, F. A., & Rao, T. M. C. (2021). Microwave assisted green synthesis of p-type Co3O4@ Mesoporous carbon spheres for simultaneous degradation of dyes and photocatalytic hydrogen evolution reaction. Materials Science in Semiconductor Processing, 121, 105432. [CrossRef] [Google Scholar]
  56. Patil, S., & Anandhi, R. J. (2020). Diversity based self-adaptive clusters using PSO clustering for crime data. International Journal of Information Technology, 12(2), 319–327. [CrossRef] [Google Scholar]
  57. Azimi, B., Maleki, H., Zavagna, L., De la Ossa, J.G., Linari, S., Lazzeri, A., & Danti, S. (2020). Bio-based electrospun fibers for wound healing. Journal of functional biomaterials, 11(3), 67. [CrossRef] [PubMed] [Google Scholar]
  58. Kim, KaKyung, Aryan Mahajan, Kamiya Patel, Shareef Syed, Amanda M. Acevedo‐Jake, and Vivek A. Kumar. "Materials and cytokines in the healing of diabetic foot ulcers." Advanced Therapeutics 4, no. 9 (2021): 2100075. [CrossRef] [Google Scholar]
  59. Gefen, Amit. "The future of pressure ulcer prevention is here: detecting and targeting inflammation early." EWMA J 19, 2 (2018): 7–13. [Google Scholar]
  60. Naik, R., Prashantha, S. C., & Nagabhushana, H. (2017). Effect of Li+ codoping on structural and luminescent properties of Mg2SiO4: RE3+ (RE= Eu, Tb) nanophosphors for displays and eccrine latent fingerprint detection. Optical Materials, 72, 295–304. [CrossRef] [Google Scholar]
  61. Yu, L., & Ding, J. (2008). Injectable hydrogels as unique biomedical materials. Chemical Society Reviews, 37(8), 1473–1481. [CrossRef] [PubMed] [Google Scholar]
  62. Khampieng, Thitikan, Supisara Wongkittithavorn, Sonthaya Chaiarwut, Pongpol Ekabutr, Prasit Pavasant, and Pitt Supaphol. "Silver nanoparticles-based hydrogel: Characterization of material parameters for pressure ulcer dressing applications." Journal of Drug Delivery Science and Technology 44 (2018): 91–100. [CrossRef] [Google Scholar]
  63. Gorgieva, Selestina. "Bacterial cellulose as a versatile platform for research and development of biomedical materials." Processes 8, 5 (2020): 624. [CrossRef] [Google Scholar]
  64. Zhai, Mingcui, Yichen Xu, Biao Zhou, and Weibin Jing. "Keratin-chitosan/n-ZnO nanocomposite hydrogel for antimicrobial treatment of burn wound healing: Characterization and biomedical application." Journal of Photochemistry and Photobiology B: Biology 180 (2018): 253–258. [CrossRef] [Google Scholar]
  65. Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646, 414327. [CrossRef] [Google Scholar]
  66. Jiji, Swaminathan, Sivalingam Udhayakumar, Chellan Rose, Chellappa Muralidharan, and Krishna Kadirvelu. "Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair." International journal of biological macromolecules 122 (2019): 452–460. [CrossRef] [PubMed] [Google Scholar]
  67. Cevher, Erdal, Ali Demir Sezer, and Ayca Yıldız Peköz. "Bioengineered wound and burn healing substitutes: novel design for biomedical applications and general aspects." In Natural polymers for drug delivery, pp. 183–202. Wallingford UK: CABI, 2017. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.