Open Access
Issue
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
Article Number 01074
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202455201074
Published online 23 July 2024
  1. Lima, C.H.R.; Lall, U. "Spatial scaling in a changing climate: A hierarchical bayesian model for non-stationary multi-site annual maximum and monthly streamflow". J. Hydrol. 383, (2010): 307–318. [CrossRef] [Google Scholar]
  2. Turner, S.W.D.; Marlow, D.; Ekström, M.; Rhodes, B.G.; Kularathna, U.; Jeffrey, P.J. "Linking climate projections to performance: A yield-based decision scaling assessment of a large urban water resources system". Water Resour. Res. 50, (2014): 3553–3567. [CrossRef] [Google Scholar]
  3. Ab Razak, N.H.; Aris, A.Z.; Ramli, M.F.; Looi, L.J.; Juahir, H. "Temporal flood incidence forecasting for Segamat River (Malaysia) using autoregressive integrated moving average modelling". J. Flood Risk Manag. 11, (2018): S794–S804. [CrossRef] [Google Scholar]
  4. Banihabib, M.E.; Bandari, R.; Valipour, M. "Improving Daily Peak Flow Forecasts Using Hybrid Fourier-Series Autoregressive Integrated Moving Average and Recurrent Artificial Neural Network Models”. AI 1, (2014): 263–275. [Google Scholar]
  5. Naik, R., Prashantha, S. C., & Nagabhushana, H. (2017). Effect of Li+ codoping on structural and luminescent properties of Mg2SiO4: RE3+ (RE= Eu, Tb) nanophosphors for displays and eccrine latent fingerprint detection. Optical Materials, 72, 295–304. [CrossRef] [Google Scholar]
  6. Demirel, M.C.; Venancio, A.; Kahya, E. "Flow forecast by SWAT model and ANN in Pracana basin, Portugal". Adv. Eng. Softw. 40, (2009): 467–473. [CrossRef] [Google Scholar]
  7. Chen, J.; Wu, Y. "Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features". J. Hydrol. (2012): 420-421, 319–328. [CrossRef] [Google Scholar]
  8. Yaseen, Z.M.; El-shafie, A.; Jaafar, O.; Afan, H.A.; Sayl, K.N. "Artificial intelligence based models for stream-flow forecasting: 2000-2015". J. Hydrol. 530, (2015): 829–844. [CrossRef] [Google Scholar]
  9. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., & & Girish, K.M. (2015). A single phase, red emissive Mg2SiO4: Sm3+ nanophosphor prepared via rapid propellant combustion route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 516–523. [Google Scholar]
  10. Dong, N.; Guan, W.; Cao, J.; Zou, Y.; Yang, M.; Wei, J.; Chen, L.; Wang, H. “A hybrid hydrologic modelling framework with data-driven and conceptual reservoir operation schemes for reservoir impact assessment and predictions’’. J. Hydrol. 619, (2023): 129246. [CrossRef] [Google Scholar]
  11. Akshatha, S., Sreenivasa, S., Parashuram, L., Kumar, V. U., Sharma, S. C., Nagabhushana, H., & & Maiyalagan, T. (2019). Synergistic effect of hybrid Ce3+/Ce4+ doped Bi2O3 nano-sphere photocatalyst for enhanced photocatalytic degradation of alizarin red S dye and its NUV excited photoluminescence studies. Journal of Environmental Chemical Engineering, 7(3), 103053. [CrossRef] [Google Scholar]
  12. Ramakrishna, G., Naik, R., Nagabhushana, H., Basavaraj, R. B., Prashantha, S. C., Sharma, S. C., & Anantharaju, K. S. (2016). White light emission and energy transfer (Dy3+→ Eu3+) in combustion synthesized YSO: Dy3+, Eu3+ nanophosphors. Optik, 127(5), 2939–2945. [CrossRef] [Google Scholar]
  13. Kumar, V.; Sharma, K.V.; Caloiero, T.; Mehta, D.J.; Singh, K. “Comprehensive Overview of Flood Modeling Approaches: A Review of Recent Advances" . Hydrology 10, (2023): 141. [CrossRef] [Google Scholar]
  14. Ikram, R.M.A.; Ewees, A.A.; Parmar, K.S.; Yaseen, Z.M.; Shahid, S.; Kisi, O. "The viability of extended marine predators algorithm-based artificial neural networks for streamflow prediction". Appl. Soft Comput. 131, (2022), 109739. [CrossRef] [Google Scholar]
  15. Jisha, P. K., Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., & & Premkumar, H.B. (2015). Facile combustion synthesized orthorhombic GdAlO3: Eu3+ nanophosphors: Structural and photoluminescence properties for WLEDs. Journal of Luminescence, 163, 47–54. [CrossRef] [Google Scholar]
  16. Ramkumar, M., Babu, C. G., Kumar, K. V., Hepsiba, D., Manjunathan, A., & Kumar, R. S. (2021, March). ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks. In Journal of Physics: Conference Series (Vol. 1831, No. 1, p. 012015). IOP Publishing. [CrossRef] [Google Scholar]
  17. Karuppusamy, L., Ravi, J., Dabbu, M., & Lakshmanan, S. (2022). Chronological salp swarm algorithm based deep belief network for intrusion detection in cloud using fuzzy entropy. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 35(1), e2948. [CrossRef] [Google Scholar]
  18. Ni, L.; Wang, D.; Wu, J.; Wang, Y.; Tao, Y.; Zhang, J.; Liu, J. "Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model". J. Hydrol 586, (2020) 124901. [CrossRef] [Google Scholar]
  19. Meresa, H. Modelling of river flow in ungauged catchment using remote sensing data: "Application of the empirical (SCS-CN), Artificial Neural Network (ANN) and Hydrological Model (HEC-HMS). Model". Earth Syst. Environ. 5, (2019) 257–273. [CrossRef] [Google Scholar]
  20. Adnan, R.M.; Kisi, O.; Mostafa, R.R.; Ahmed, A.N.; El-Shafie, A. "The potential of a novel support vector machine trained with modified mayfly optimization algorithm for streamflow prediction". Hydrol. Sci. J, 67, (2022), 161–174. [CrossRef] [Google Scholar]
  21. Meng, E.; Huang, S.; Huang, Q.; Fang, W.; Wu, L.; Wang, L. "A robust method for non-stationary streamflow prediction based on improved EMD-SVM model". J. Hydrol. 568, (2019), 462–478. [CrossRef] [Google Scholar]
  22. Noori, R.; Karbassi, A.R.; Moghaddamnia, A.; Han, D.; Zokaei-Ashtiani, M.H.; Farokhnia, A.; Gousheh, M.G. "Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction". J. Hydrol. 401, (2011), 177–189. [CrossRef] [Google Scholar]
  23. Tyralis, H.; Papacharalampous, G.; Langousis, A. "A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources". Water 11, (2019),910. [CrossRef] [Google Scholar]
  24. Tyralis, H.; Papacharalampous, G.; Langousis, A. "Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms". Neural Comput. Appl. 33, (2021), 3053–3068. [CrossRef] [Google Scholar]
  25. Suji Prasad, S. J., Thangatamilan, M., Suresh, M., Panchal, H., Rajan, C. A., Sagana, C., & & Sadasivuni, K.K. (2022). An efficient LoRa-based smart agriculture management and monitoring system using wireless sensor networks. International Journal of Ambient Energy, 43(1), 5447–5450. [CrossRef] [Google Scholar]
  26. Song, Z.; Xia, J.; Wang, G.; She, D.; Hu, C.; Hong, S. "Regionalization of hydrological model parameters using gradient boosting machine. Hydrol". Earth Syst. Sci. 26, (2022) 505–524. [CrossRef] [Google Scholar]
  27. Akbarian, M.; Saghafian, B.; Golian, S. "Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran. J. Hydrol. 620, (2023), 129480. [CrossRef] [Google Scholar]
  28. Luo, P.; Luo, M.; Li, F.; Qi, X.; Huo, A.; Wang, Z.; He, B.; Takara, K.; Nover, D.; Wang, Y. "Urban flood numerical simulation: Research, methods and future perspectives". Environ. Model. Softw. 156, (2022), 105478. [CrossRef] [Google Scholar]
  29. Kumar, V.; Azamathulla, H.M.; Sharma, K.V.; Mehta, D.J.; Maharaj, K.T. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management". Sustainability 15, (2023), 10543. [CrossRef] [Google Scholar]
  30. Akshatha, S., Sreenivasa, S., Parashuram, L., Alharthi, F. A., & Rao, T. M. C. (2021). Microwave assisted green synthesis of p-type Co3O4@ Mesoporous carbon spheres for simultaneous degradation of dyes and photocatalytic hydrogen evolution reaction. Materials Science in Semiconductor Processing, 121, 105432. [CrossRef] [Google Scholar]
  31. Patil, S., & Anandhi, R. J. (2020). Diversity based self-adaptive clusters using PSO clustering for crime data. International Journal of Information Technology, 12(2), 319–327. [CrossRef] [Google Scholar]
  32. Niu, W.; Feng, Z. "Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management". Sustain. Cities Soc. 2021, 64, 102562. [CrossRef] [Google Scholar]
  33. Bhasme, P.; Vagadiya, J.; Bhatia, U. "Enhancing predictive skills in physically-consistent way: Physics Informed Machine Learning for Hydrological Processes". arXiv 2021, arXiv:2104.11009. [Google Scholar]
  34. Souza, D.P.M.; Martinho, A.D.; Rocha, C.C.; da S. Christo, E.; Goliatt, L. "Hybrid particle swarm optimization and group method of data handling for short-term prediction of natural daily streamflows". Model. Earth Syst. Environ 8, (2022), 5743–5759. [CrossRef] [Google Scholar]
  35. Martinho, A.D.; Saporetti, C.M.; Goliatt, L. "Approaches for the short-term prediction of natural daily streamflows using hybrid machine learning enhanced with grey wolf optimization". Hydrol. Sci. J 68, (2023), 16–33. [CrossRef] [Google Scholar]
  36. Haznedar, B.; Kilinc, H.C.; Ozkan, F.; Yurtsever, A. "Streamflow forecasting using a hybrid LSTM-PSO approach: The case of Seyhan Basin". Nat". Hazards 2023, 117, 681–701. [Google Scholar] [CrossRef] [CrossRef] [Google Scholar]
  37. Hao, R.; Bai, Z. "Comparative Study for Daily Streamflow Simulation with Different Machine Learning Methods". Water 2023, 15, 1179. [CrossRef] [Google Scholar]
  38. Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831–43845. [CrossRef] [Google Scholar]
  39. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98–102. [Google Scholar]
  40. Bakhshi Ostadkalayeh, F.; Moradi, S.; Asadi, A.; Moghaddam Nia, A.; Taheri, S. "Performance Improvement of LSTM-based Deep Learning Model for Streamflow Forecasting Using Kalman Filtering". Water Resour. Manag. 2023, 37, 3111–3127. [CrossRef] [Google Scholar]
  41. Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., et al. (2017). Theory-guided data science: "A new paradigm for scientific discovery from data". IEEE Transactions on Knowledge and Data Engineering, 29(10), 2318–2331. [CrossRef] [Google Scholar]
  42. Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., & Kumar, V. (2018). "Machine learning for the geosciences: Challenges and opportunities". IEEE Transactions on Knowledge and Data Engineering, 31(8), 1544–1554. [Google Scholar]
  43. McClelland, J. L., & Rumelhart, D. E. (1986). "Parallel distributed processing: Explorations in the microstructure of cognition". Cambridge, Massachusetts: The MIT Press. [Google Scholar]
  44. Minns, A. W., & Hall, M. J. (1996). "Artificial neural networks as rainfall-runoff models". Hydrological Sciences Journal, 41(3), 399–417 [CrossRef] [Google Scholar]
  45. Nash, J. E., & Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models Part I—A discussion of principles". Journal of hydrology, 10(3), 282–290. [CrossRef] [Google Scholar]
  46. Nayak, P. C., Satyaji Rao, Y. R., & Sudheer, K. P. (2006). "Groundwater level forecasting in a shallow aquifer using artificial neural network approach". Water Resources Management, 20, 77–90. https://doi.org/10.1007/s11269-006-4007-z [CrossRef] [Google Scholar]
  47. Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., et al. (2015). "Development of a large-sample watershed-scale hydrometeorological dataset for the contiguous USA: Dataset characteristics and assessment of regional variability in hydrologic model performance". Hydrology and Earth System Sciences, 19, 209–223. [CrossRef] [Google Scholar]
  48. Nielsen, S. A., & Hansen, E. (1973). "Numerical simulation of the rainfall-runoff process on a daily basis. Hydrology Research, 4(3), 171–190. [CrossRef] [Google Scholar]
  49. Nourani, V., Komasi, M., & Mano, A. (2009). A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resources Management, 23, 2877–2894. https://doi.org/10.1007/s11269-009-9414-5 [CrossRef] [Google Scholar]
  50. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482. [CrossRef] [Google Scholar]
  51. Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z., & & Galal, A.M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113. [CrossRef] [Google Scholar]
  52. Oyebode, O. K., & Adeyemo, J. A. (2014). "Genetic programming: Principles, applications and opportunities for hydrological modelling". World Academy of Science, Engineering and Technology International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 8(6), 348–354. [Google Scholar]
  53. Perrin, C., Michel, C., & Andréassian, V. (2003). "Improvement of a parsimonious model for streamflow simulation". Journal of Hydrology, 279(1), 275–289. [CrossRef] [Google Scholar]
  54. Karimaee Tabarestani, M. and Zarrati, A.R. (2015). “Design of riprap stone around bridge piers using empirical and neural network method”, Civil Engineering Infrastructures Journal, 48(1), 175- 188. [Google Scholar]
  55. Machado, F., Mine, M., Kaviski, E. and Fill, H. (2011). “Monthly rainfall-runoff modelling using artificial neural networks”, Hydrological Sciences Journal, 56(3), 349–361. [CrossRef] [Google Scholar]
  56. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X., & & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686. [CrossRef] [Google Scholar]
  57. Indira, D. N. V. S. L. S., Ganiya, R.K., Ashok Babu, P., Xavier, A., Kavisankar, L., Hemalatha, S., & & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  58. Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
  59. Mahjoobi, J. and Adeli Mosabbeb, E. (2009). “Prediction of significant wave height using regressive support vector machines”, Ocean Engineering, 36(5), 339–347. [CrossRef] [Google Scholar]
  60. Nourani, V. (2017). “An emotional ANN (EANN) approach to modeling rainfall-runoff process”, Journal of Hydrology , 544, 267–277 [CrossRef] [Google Scholar]
  61. Platt, J. (1999). “Fast training of support vector machines using sequential minimal optimization”, Advances in Kernel Methods, Support Vector Learning, Schölkopf_Burges, C.J.C. and Smola, A.J., (eds.), Cambridge, MA, MIT Press, 185–208. [Google Scholar]
  62. Quinlan, J.R. (1992). “Learning with continuous classes”, Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence, World Scientific, Singapore, 343–348. [Google Scholar]
  63. Shortridge, J.E., Guikema, S.D. and Zaitchik, B.F. (2016). “Machine learning methods for empirical streamflow simulation: A comparison of model accuracy, interpretability and uncertainty in seasonal watersheds”, Hydrological Earth System Sciences, 20, 2611–2628. [CrossRef] [Google Scholar]
  64. Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549–3564. [CrossRef] [Google Scholar]
  65. Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259–262. [Google Scholar]
  66. Smola, A.J. and Schölkopf, B. (1988). “A tutorial on support vector regression”, Royal Holloway College, London, U.K., NeuroCOLT Technology Report, TR 1998-030 [Google Scholar]
  67. Vapnik, V. (1995). The nature of statistical learning tTheory, Springer, N.Y. [CrossRef] [Google Scholar]
  68. Wang, Y. and Witten, I.H. (1997). “Induction of model trees for predicting continuous lasses”, Proceedings of the Poster Papers of the European Conference on Machine Learning, University of Economics, Faculty of Informatics and Statistics, Prague. [Google Scholar]
  69. Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646, 414327. [CrossRef] [Google Scholar]
  70. Wu, C.L. and Chau, K.W. (2011). “Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis”, Journal of Hydrology, 399(3-4), 394–409. [CrossRef] [Google Scholar]
  71. Yilmaz, A. and Muttil, N. (2014). “Runoff estimation by machine learning methods and application to the Euphrates Basin in Turkey”, Journal of Hydrologic Engineering, 19(5) : 1015–1025. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.