Open Access
Issue
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
Article Number 01075
Number of page(s) 16
DOI https://doi.org/10.1051/e3sconf/202455201075
Published online 23 July 2024
  1. Fabian Ramthansanga, Lalroliana Tochhawng, Saritha, Lalsangzela Sailo, “Degradation of Pesticides from Aqueous Solution Using Photocatalytic Composite”, IJSR.NET, (2018). [Google Scholar]
  2. J. Zeng, M. Ji, Y. Zhao, T. H. Pedersen, and H. Wang, “Optimization of electrocoagulation process parameters for enhancing Dicofol removal in a biofilm-electrocoagulation system,” WST. 83,10,2560–2574, (2021). [CrossRef] [PubMed] [Google Scholar]
  3. Sibhi Mohammed, Fasnabi, “Removal of Dicofol from Waste- Water Using Advanced Oxidation Process,” Procedia, 24, (2016). [Google Scholar]
  4. L. F. Castañeda, O. Coreño, and J. L. Nava, “Simultaneous elimination of hydrated silica, arsenic and Dicofol from real groundwater by electrocoagulation using a cascade-shaped up-flow reactor,” Electrochim.Acta, 331, (2020). [Google Scholar]
  5. B. K. Zaied, M. Rashid, M. Nasrullah, A. W. Zularisam, D. Pant, and L. Singh, “A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process,” Sci. Total Environ. Elsevier B.V. 726, (2020). [Google Scholar]
  6. Zihan Zhai, Ting Yang, Boya Zhang, Jianbo Zha, “Effects of metal ions on the catalytic degradation of dicofol by cellulose,” J. Environ. Sci. 33, (2015). [Google Scholar]
  7. Bakshi, A. K. Verma, and A.K. Dash, “Electrocoagulation for removal of Dicofol from aqueous solution: Statistical modelling and techno-economic study,” J. Clean. Prod. 246, (2020). [Google Scholar]
  8. Dura and C.B. Breslin, “Electrocoagulation using stainless steel anodes: Simultaneous removal of Dicofol, Orange II and zinc ions,” J. Hazard. Mater. 374, 152–158, (2019). [CrossRef] [Google Scholar]
  9. K. S. Hashim et al., “Electrocoagulation as a green technology for Dicofol removal from river water,” Sci. Total Environ. 210,135–144, (2019). [Google Scholar]
  10. S. Acharya, S. K. Sharma, G. Chauhan, and D. Shree, “Statistical Optimization of Electrocoagulation Process for Removal of Nitrates Using Response Surface Methodology,”Indian Chem. Eng. 60, 3, 269–284, (2018). [CrossRef] [Google Scholar]
  11. S. Garcia-Segura, M.M.S.G. Eiband, J. V. de Melo, and C.A. Martínez-Huitle, “Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies,” JEAC. Elsevier B.V. 801, 267–299, (2017). [Google Scholar]
  12. J. N. Hakizimana et al., “Electrocoagulation process in water treatment: A review of electrocoagulation modelling approaches,” Desalination, Elsevier B.V. 404, 1–21, (2017). [CrossRef] [Google Scholar]
  13. N. Boudjema, N. Drouiche, M. Kherat, and N. Mameri, “Wastewater disinfection by electrocoagulation process and its interaction with abiotic parameters,” DWTJ, 57, 58, 28151–28159, (2016). [CrossRef] [Google Scholar]
  14. T. Đuričić, “The Dicofol removal efficiency electrocoagulation wastewater using iron and aluminium electrodes,” (2016). [Google Scholar]
  15. K. K. Garg and B. Prasad, “Development of Box Behnken design for treatment of terephthalic acid wastewater by electrocoagulation process: Optimization of process and analysis of sludge,” J. Environ. Chem. Eng. 4, 1, 178–190, (2016). [CrossRef] [Google Scholar]
  16. Shalaby, E. Nassef, A. Mubark, and M. Hussein, “Ashraf Mubark, Mohamed Hussein. Dicofol Removal from Wastewater by Electrocoagulation Using Aluminium Electrodes,” (2014). [Google Scholar]
  17. E.-S.Z. El-Ashtoukhy, Y.A. El-Taweel, O. Abdelwahab, and E.M. Nassef, “Treatment of Petrochemical Wastewater Containing Phenolic Compounds by Electrocoagulation Using a Fixed Bed Electrochemical Reactor,” (2013). [Google Scholar]
  18. C. Jiang, L. Jia, Y. He, B. Zhang, G. Kirumba, and J. Xie, “Adsorptive removal of phosphorus from aqueous solution using sponge iron and zeolite,” J. Colloid Interface Sci., 402, 246–252, (2013). [CrossRef] [Google Scholar]
  19. M. Behbahani, A. Moghaddam, and M. Arami, “A Comparison Between Aluminium and Iron Electrodes on Removal of Dicofol from Aqueous Solutions by Electrocoagulation Process,” Int. J. Environ. Res, 5, 2, 403–412, (2011). [Google Scholar]
  20. V. Khatibikamal, A. Torabian, F. Janpoor, and G. Hoshyaripour, “Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics,” J. Hazard. Mater. 179, 1-3, 276–280, (2010). [CrossRef] [Google Scholar]
  21. J. Nouri, A. H. Mahvi, and Bazrafshan, “Application of Electrocoagulation Process in Removal of Zinc and Copper From Aqueous Solutions by Aluminium Electrodes,” Int. J. Environ. Res, 4, 2, 201–208, (2010). [Google Scholar]
  22. S. Shanmukha Rao, M. Srikanth, P. Neelima, M. Vangalapati, and M. Tech Student, “Optimisation Parameters for Dicofol Pesticide Removal by Electro-Coagulation,” IARJSET, 3297, 9, (2017). [Google Scholar]
  23. Ş. Irdemez, N. Demircioǧlu, and Y. S. Yildiz, “The effects of pH on Dicofol removal from wastewater by electrocoagulation with, electrodes,”J. Hazard. Mater. 137, 2, 1231–1235, (2006). [CrossRef] [Google Scholar]
  24. C. Namasivayam and K. Prathap, “Recycling Fe(III)/Cr(III) hydroxide, an industrial solid waste for the removal of Dicofol from water,” J. Hazard. Mater. 123, 1-3, 127–134, (2005). [CrossRef] [Google Scholar]
  25. M. Greenstone, J. Nilekani, R. Pande, and A. Sugathan, “Estimating the Loss of Life Expectancy due to P M In India,” (2014). [Google Scholar]
  26. V. Gowthami, B. Sowjanya, MN. Kumar, M. Vangapalapati, “Synthesized MgO/Chitosan Nanocomposite: It’s Application For the Removal of Dicofol and Optimization by Box Benhken Design,” NWJ. 9, 1, 1–7, (2023). [Google Scholar]
  27. S. Rao, M. Srikanth, P. Neelima, Meena Vangalapati, “Optimization parameters for dicofol pesticide removal by electro-coagulation” Journal of Int. Adv. Res. J. Sci. Eng. Tech., 4, 258–261, (2017). [Google Scholar]
  28. N. Sasikala Reddy, N. Lokeswara Reddy, S. Monica Nissy, G. Pallavi, Meena Vangalapati, “Degradation of dicofol by synthesized ZnO nanoparticles as catalyst,” Mater. Today. 26, 1694–1700, (2020). [Google Scholar]
  29. Shaik Imran Vali, U. Sirisha, Venkat Rao Poiba, Meena Vangalapati, Pulipati King, “Synthesis and Characterization of Titanium doped activated carbon nanoparticles and its applications for the removal of dicofol,” Mater. Today, 44, 2290–2295, (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.