Open Access
Issue |
E3S Web Conf.
Volume 552, 2024
16th International Conference on Materials Processing and Characterization (ICMPC 2024)
|
|
---|---|---|
Article Number | 01134 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202455201134 | |
Published online | 23 July 2024 |
- S.M.A et al., “Environmental Impacts and Remediation in Soil Analysis Techniques, ” in 2023 International Conference on Sustainable Communication Networks and Application (ICSCNA), (2023): 666-672.DOI: 10.1109/ICSCNA58489.2023.10370485. [Google Scholar]
- S. Huichao, W. Heli, S. Liang, Q. Jingxian, and L. Xinying, “Research Progress of Surfactants Remediation in Contaminated Soils, ” in 2011 Third International Conference on Measuring Technology and Mechatronics Automation, 2011, 31, 49-152.DOI: 10.1109/ICMTMA.2011.609. [Google Scholar]
- C. Li, X. Pi, C. Li, and Y. Yang, “Electrical Breakdown Characteristics of Soil under Pulse High Voltage, ” in 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), (2021): 1-4.DOI: 10.1109/CIEEC50170.2021.9510900. [Google Scholar]
- X. Pi, C. Li, M. Ran, C. Li, and Y. Yang, “Study on Corona Discharge Characteristics of Soil under Pulse High Voltage, ” in 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), 2022, pp. 853–857.DOI: 10.1109/CIEEC54735.2022.9846216. [CrossRef] [Google Scholar]
- C. Smaranda, L. Bulgariu, M. Rosca, R. Turculet, C. Ghinea, and M. Gavrilescu, “Evaluation of pentachlorophenol leaching potential in natural soils, ” in 2015 E-Health and Bioengineering Conference (EHB), 2015, pp. 1–4.DOI: 10.1109/EHB.2015.739148 [Google Scholar]
- W.-T. Wang, C.-H. Wu, Y.-H. Wang, and J.-L. Zhao, “Characterization and bentonite amendment of oil contaminated soils, ” in 2011 International Symposium on Water Resource and Environmental Protection, 2011, vol. 3, pp. 1844–1846.DOI: 10.1109/ISWREP.2011.5893611. [CrossRef] [Google Scholar]
- Vapnik V. The nature of statistical learning theory. Springer Science+Business Media; 1999. [Google Scholar]
- Elisseeff A., Weston J. A kernel method for multi-labelled classification. Adv Neural Inf Process Syst. 2001;14. [Google Scholar]
- Zhang G-l, Liu F., SONG X.-D. Recent progress and future prospect of digital soil mapping: A review. J Integr Agric. 2017;16(12):2871-85. [CrossRef] [Google Scholar]
- Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123-40. [Google Scholar]
- Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. [CrossRef] [Google Scholar]
- Zhang M., Shi W., Xu Z. Systematic comparison of five machine-learning models in classification and interpolation of soil particle size fractions using different transformed data. Hydrol Earth Syst Sci. 2020;24(5):2505-26. [CrossRef] [Google Scholar]
- Yousefi S., Pourghasemi H.R., Avand M., Janizadeh S., Tavangar S., Santosh M. Assessment of land degradation using machine-learning techniques: A case of declining rangelands. Land Degrad Dev. 2021;32(3):1452-66. [CrossRef] [Google Scholar]
- Zhou T., Geng Y., Chen J., Pan J., Haase D., Lausch A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci Total Environ. 2020;729:138244. [CrossRef] [Google Scholar]
- Wiesmeier M., Urbanski L., Hobley E., Lang B., von Lützow M., Marin-Spiotta E. et al. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma. 2019;333:149. [CrossRef] [Google Scholar]
- Yang M., Xu D., Chen S., Li H., Shi Z.. Evaluation of machine learning approaches to predict soil organic matter and pH using Vis-NIR spectra. Sensors (Basel). 2019;19(2):263. [CrossRef] [Google Scholar]
- Reda R., Saffaj T., Ilham B., Saidi O., Issam K., Brahim L. et al. A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy. Chemom Intell Lab Syst. 2019;195:103873. [CrossRef] [Google Scholar]
- Zhang Y., Sui B., Shen H., Ouyang L. Mapping stocks of soil total nitrogen using remote sensing data: A comparison of random forest models with different predictors. Comput Electron Agric. 2019;160:23-30. [CrossRef] [Google Scholar]
- Zhou T., Geng Y., Chen J., Sun C., Haase D., Lausch A. Mapping of soil total nitrogen content in the middle reaches of the Heihe River Basin in China using multi-source remote sensing-derived variables. Remote Sens. 2019;11(24):2934. [CrossRef] [Google Scholar]
- Bousbih S., Zribi M., Pelletier C., Gorrab A., Lili-Chabaane Z., Baghdadi N. et al. Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sens. 2019;11(13):1520. [CrossRef] [Google Scholar]
- Riese F.M., Keller S. Soil texture classification with 1D convolutional neural networks based on hyperspectral data. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci. 2019;IV-2/W5:615-21. [CrossRef] [Google Scholar]
- Keshavarzi A., Sarmadian F., Omran E-SE, Iqbal M. A neural network model for estimating soil phosphorus using terrain analysis. Egypt J Remote Sens Space Sci. 2015;18(2):127-35. [Google Scholar]
- Bouslihim Y., Rochdi A., El Amrani Paaza NEA. Machine learning approaches for the prediction of soil aggregate stability. Heliyon. 2021;7(3):e06480. [CrossRef] [Google Scholar]
- Zhou T., Geng Y., Ji C., Xu X., Wang H., Pan J. et al. Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci Total Environ. 2021;755(2):142661. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.