Open Access
Issue
E3S Web Conf.
Volume 556, 2024
International Conference on Recent Advances in Waste Minimization & Utilization-2024 (RAWMU-2024)
Article Number 01034
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202455601034
Published online 09 August 2024
  1. Ally, M. (2008). Foundations of educational theory for online learning. In T. Anderson (Ed.), Theory and practice of online learning (2nd ed., pp. 15-44). Athabasca University Press. [CrossRef] [Google Scholar]
  2. Anderson, R., Anderson, R., & Simonson, M. (1998). Foundations of educational technology: Integrative approaches and interdisciplinary perspectives. Boston, MA: Allyn& Bacon. [Google Scholar]
  3. Anderson, T., & Dron, J. (2011). Three generations of distance education pedagogy. International Review of Research in Open and Distributed Learning, 12(3), 80-97. [CrossRef] [Google Scholar]
  4. Carr, N. (2000). Digital enterprise: How to reshape your business for a connected world. Boston, MA: Harvard Business Review Press. [Google Scholar]
  5. Daniel, J. (2012). Making sense of MOOCs: Musings in a maze of myth, paradox and possibility. Journal of Interactive Media in Education, 3.DOI: 10.5334/2012-18 [Google Scholar]
  6. Donthu, N. et. al. (2021). How to conduct a bibliometric analysis: An overview and guidelines, J. Bus. Res. 2021, 133, 285-296. [Google Scholar]
  7. Dutt, et al. (2017). A systematic review on educational data mining”, IEEE Access, 5, 15991-16005. [CrossRef] [Google Scholar]
  8. Feng, X. (2020). Academic emotion classification and recognition method for large-scale online learning environment—Based on A-CNN and LSTM-ATT deep learning pipeline method, Int. J. Environ. Res. Public Health 2020, 17, 1941. [CrossRef] [Google Scholar]
  9. Garrison, D.R., & Anderson, T. (2003). E-learning in the 21st century: A framework for research and practice. London, UK: Routledge. [Google Scholar]
  10. Garrison, D.R., & Vaughan, N.D. (2008). Blended learning in higher education: Framework, principles, and guidelines. San Francisco, CA: Jossey-Bass. [Google Scholar]
  11. Hansen, et. al. (2020). Analyzing Social Media Networks with Nodexl: Insights from a Connected World, 2nd ed.; Morgan Kaufmann: Cambridge, MA, USA. [Google Scholar]
  12. Hodges, C. et. al. (2020). The difference between emergency remote teaching and online learning. Educause Review, 27. [Google Scholar]
  13. Hodges, C. et.al. (2020). The difference between emergency remote teaching and online learning. Educause Review, 27. [Google Scholar]
  14. Lin, C.F. et. al. (2013). Data mining for providing a personalized learning path in creativity: An application of decision trees”, Comput. Educ. 2013, 68, 199-210. [CrossRef] [Google Scholar]
  15. Luo, Y. et.al (2022). Prediction of learning outcomes with a machine learning algorithm based on online learning behavior data in blended courses, Asia Pac. Educ. Rev., 1-19. [Google Scholar]
  16. Means, B., & Vosloo, S. (2016). Using technology to train teachers: Appropriate uses of ICT for teacher professional development in developing countries. Washington, DC: World Bank. [Google Scholar]
  17. Naidu, S. (2006). E-Learning: A guidebook of principles, procedures, and practices. Commonwealth Educational Media Centre for Asia. [Google Scholar]
  18. Palloff, R.M., & Pratt, K. (2007). Building online learning communities: Effective strategies for the virtual classroom. San Francisco, CA: Jossey-Bass. [Google Scholar]
  19. Panda, S., & Mishra, S. (2007). E-Learning in a mega open university: Faculty attitude, barriers and motivators. Educational Media International, 44(4), 323-338. [CrossRef] [Google Scholar]
  20. Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles: Concepts and evidence. Psychological Science in the Public Interest, 9(3), 105-119. [CrossRef] [PubMed] [Google Scholar]
  21. Pelletier, K. et al. (2021). Educause Horizon Report Teaching and Learning Edition”, Educause.. Available online: https://www.learntechlib.org/p/219489/ (accessed on 18 December 2022). [Google Scholar]
  22. Puentedura, R.R. (2006). Transformation, technology, and education. Retrieved from http://www.hippasus.com/rrpweblog/archives/2006/02/17/TransformationTechnologyAndEducation.pdf [Google Scholar]
  23. Salmon, G. (2011). E-moderating: The key to teaching and learning online (3rd ed.). New York, NY: Routledge. [Google Scholar]
  24. Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of Instructional Technology and Distance Learning, 2(1), 3-10. [Google Scholar]
  25. Smith, A.E.; Humphreys, M.S. (2006). Evaluation of unsupervised semantic mapping of natural language with Leximancer concept mapping, Behav. Res. Methods, 38, 262-279. [CrossRef] [PubMed] [Google Scholar]
  26. van der Maaten, L.; Hinton, G. (2008). Visualizing data using t-SNE”, J. Mach. Learn. Res., 9, 2579-2605. [Google Scholar]
  27. Wang, C. (2022). Emotion recognition of college students’ online learning engagement based on deep learning”, Int. J. Emerg. Technol. Learn., 17, 110-122. [CrossRef] [Google Scholar]
  28. Wang, X.; Zhang, L.; He, T. (2022). Learning performance prediction-based personalized feedback in online learning via machine learning”, Sustainability, 14, 7654. [CrossRef] [Google Scholar]
  29. Zawacki-Richter, O. et.al. (2019). Systematic review of research on artificial intelligence applications in higher education-where are the educators?”, Int. J. Educ. Technol. High. Educ., 16, 39. [CrossRef] [Google Scholar]
  30. A.H. Elsheikh et al., “Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia, ” Process Safety and Environmental Protection, Article vol. 149, pp. 223-233, 2021,DOI: 10.1016/j.psep.2020.10.048. [CrossRef] [PubMed] [Google Scholar]
  31. Kavitha et al., "Deep Learning Based Capsule Neural Network Model for Breast Cancer Diagnosis Using Mammogram Images, " Interdisciplinary Sciences - Computational Life Sciences, Article vol. 14, no. 1, pp. 113129, 2022,DOI: 10.1007/s12539-021-00467-y. [CrossRef] [PubMed] [Google Scholar]
  32. A. Khamparia et al., “Diagnosis of breast cancer based on modern mammography using hybrid transfer learning, ” Multidimensional Systems and Signal Processing, Article vol. 32, no. 2, pp. 747-765, 2021,DOI: 10.1007/s11045-020-00756-7. [CrossRef] [PubMed] [Google Scholar]
  33. A. Khamparia, D. Gupta, V.H.C. de Albuquerque, A.K. Sangaiah, and R.H. Jhaveri, “Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning, ” Journal of Supercomputing, Article vol. 76, no. 11, pp. 8590-8608, 2020,DOI: 10.1007/s11227-020-03159-4. [CrossRef] [Google Scholar]
  34. S.I. Manzoor, J. Singla, and Nikita, "Fake news detection using machine learning approaches: A systematic review, " 2019: Institute of Electrical and Electronics Engineers Inc., pp. 230-234, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074097965&doi=10.1109%2flCOEI.2019.8862770&]paitnerID=40&md5=ff6d3d201ac780d0a58f35f13d8d794. DOI: 10.1109/ICOEI.2019.8862770. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074097965&doi=10.1109%2flCOEI.2019.8862770&]paitnerID=40&md5=ff6d3d201ac780d0a58f35f13d8d794. [Google Scholar]
  35. P.S. Singh, T. Singh, and P. Kaur, “Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents, ” Annals of Nuclear Energy, Article vol. 35, no. 6, pp. 10931097, 2008, DOI: 10.1016/j.anucene.2007.10.007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.