Open Access
Issue |
E3S Web of Conf.
Volume 558, 2024
4th International Conference on Sustainable, Circular Management and Environmental Engineering (ISCMEE 2024)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202455801009 | |
Published online | 02 August 2024 |
- Inderwildi, O., & Kraft, M. (2022). Intelligent Decarbonisation. Can Artificial Intelligence and Cyber-Physical Systems Help Achieve Climate Mitigation Targets? Lecture Notes in Energy. Springer Nature Switzerland AG, 260. https://doi.org/10.1007/978-3-030-86215-2 [Google Scholar]
- Kravchenko, M., Trofymenko, O., Kopishynska, K., & Pyshnograiev, I. (2023). Assessing the Development of Energy Innovations and Its Impact on the Sustainable Development of Countries. In: Zgurovsky, M., Pankratova, N. (eds) System Analysis and Artificial Intelligence. Studies in Computational Intelligence, 1107. Springer, Cham. https://doi.org/10.1007/978-3-031-37450-0_24 [Google Scholar]
- Rattle, I., Gailani, A., & Taylor, P.G. (2024) Decarbonisation strategies in industry: going beyond clusters. Sustainability Science, 19, 105–123. https://doi.org/10.1007/s11625-023-01313-4 [CrossRef] [Google Scholar]
- Bataille, C, Nilsson, L., & Jotzo, F (2021) Industry in a net-zero emissions world: new mitigation pathways, new supply chains, modelling needs and policy implications. Energy Clim Change, 2, 100059. [CrossRef] [Google Scholar]
- Leal-Arcas, R. Gasimov, A., & Vundhyala Shanthan, R. Energy Security, Decarbonization, and the Environmental Justice Movement (2023). Sustainability in Environment, 8, 53-66. [Google Scholar]
- Olabi, A., Abdelghafar, A., Maghrabie, H., Sayed, E., Rezk, H., Radi, M., Obaideen, K. & Abdelkareem, M. A. (2023). Application of Artificial Intelligence for Prediction, Optimization, and Control of Thermal Energy Storage Systems. Thermal Science and Engineering Progress, 39, 101730. https://doi.org/10.1016/j.tsep.2023.101730. [CrossRef] [Google Scholar]
- Fang B, Yu J, Chen, Z, et al. (2023) Artificial intelligence for waste management in smart cities: A review. Environmental Chemistry Letters, 21, 1959–1989. 10 [CrossRef] [Google Scholar]
- Shams, S. R., Jahani, A., Kalantary, S., Moeinaddini, M. & Khorasani, N. (2021). Artificial Intelligence Accuracy Assessment in NO2. Concentration Forecasting of Metropolises Air. Scientific Reports, 11, 1805. https://doi.org/10.1038/s41598-021-81455-6. [Google Scholar]
- Ahmad, S., Shafiullah, M., Ahmed, C. & M, Alowaifeer (2023). A Review of Microgrid Energy Management and Control Strategies. IEEE Access, 11, 21729-21757. https://doi.org/10.1109/ACCESS.2023.3248511 [CrossRef] [Google Scholar]
- Fostering Effective Energy Transition (2023). World Economic Forum. https://www.weforum.org/publications/fostering-effective-energy-transition-2023/ [Google Scholar]
- Boston Consulting Group (2021). Reduce Carbon and Costs with the Power of AI. https://www.bcg.com/publications/2021/ai-to-reduce-carbon-emissions [Google Scholar]
- Enerdata (2024). Global Energy Transition Statistics. https://yearbook.enerdata.net [Google Scholar]
- Voitko, S., Trofymenko, O. & Pavlenko, T. (2021). Decarbonisation of the economy through the introduction of innovative technologies into the energy sector. E3S Web Conference, 255, 01016. https://doi.org/10.1051/e3sconf/202125501016 [Google Scholar]
- The Royal Norwegian Ministry of Energy. (2024). https://www.regjeringen.no/no/dep/sd/id791/ [Google Scholar]
- Norwegian Petroleum Directorate. (2024). https://energistics.org/norwegian- petroleum-directorate-npd [Google Scholar]
- Equinor. (2021). Equinor annual and sustainability reports for 2021. https://www.equinor.com/news/20220318-annual-sustainability-reports-2021 [Google Scholar]
- The Global AI Index. (2024). https://www.tortoisemedia.com/intelligence/global- ai/#data [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.