Open Access
Issue
E3S Web of Conf.
Volume 559, 2024
2024 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2024)
Article Number 02008
Number of page(s) 21
Section Mechanical Engineering
DOI https://doi.org/10.1051/e3sconf/202455902008
Published online 08 August 2024
  1. J. Bhattarai, Frontiers of corrosion science, (1st ed., Kshitiz Publication, Kirtipur, Nepal, 2010). [Google Scholar]
  2. I. Laudari, N.R. Phulara, M. Gautam, J. Bhattarai, Evaluation of corrosion condition of some steel-reinforced concrete infrastructures available in Pokhara Valley of Nepal. Tribhuvan Univ. J. 36(1), 1–17 (2021). [CrossRef] [Google Scholar]
  3. G. Abaho, M.R. Pranesh, G.S. Kumaran, Corrosion of steel reinforcements in concretes of non-coastal areas -Case study: Kigali, Rwanda. Int. J. Eng. Res. Afr. 38, 60–66 (2018). [CrossRef] [Google Scholar]
  4. AMPP, Highways and bridges, in NACE International Report, 2013 (Available at: https://www.ampp.org/technical-research/what-is-corrosion/corrosion-reference-library/highways-bridges) [Google Scholar]
  5. F. Bolzoni, A. Brenna, S. Beretta, M. Ormellese, M.V. Diamanti, M.P. Pedeferri, Evaluation of preventative methods against rebar corrosion in concrete. Key Eng. Mater. 919, 132–142 (2022). [CrossRef] [Google Scholar]
  6. N.R. Phulara, J. Bhattarai, Assessment on corrosion of steel reinforced concrete structures of Kathmandu Valley using corrosion potential mapping method, J. Inst. Eng. 15(2), 45–54 (2019). [CrossRef] [Google Scholar]
  7. E.N. Kani, A.H. Rafiean, A. Alishah, S.H. Astani, S.H. Ghaffar, The effects of nano-Fe2O3 on the mechanical, physical and microstructure of cementitious composites. Constr. Build. Mater. 266, 121137 (2021). [CrossRef] [Google Scholar]
  8. P.A. Jose, A.G. Alex, T. Gebrehiwet, S. Murugan, Influence of Fe2O3 nanoparticles on the characteristics of waste marble powder mixed cement mortars. Int. J. Concr. Struct. Mater. 17 1(2023) 1–12. [CrossRef] [Google Scholar]
  9. T. Soylev, M. Richardson, Corrosion inhibitors for steel in concrete: state-of-the-art report. Constr. Build. Mater. 22(4), 609–622 (2008). [CrossRef] [Google Scholar]
  10. J. Bhattarai, M. Somai, N. Acharya, A. Giri, A. Roka, N.R. Phulara, Study on the effects of green-based plant extracts and water-proofers as anti-corrosion agents for steel-reinforced concrete slabs. E3S Web Conf. 302, 02018 (2021). [Google Scholar]
  11. Y.P. Asmara, Corrosion of steel reinforcement, in: Concrete Reinforcement Degradation and Rehabilitation. Chapter 5, Springer, Singapore, 59–70 (2023). [Google Scholar]
  12. S. Yuvaraj, K. Nirmalkumar, V.R. Kumar, R. Gayathri, K. Mukilan, S. Shubikksha, Influence of corrosion inhibitors inreinforced concrete -a state of art of review. Mater. Today: Proc.68(6), 2406–2412 (2022). [CrossRef] [Google Scholar]
  13. Z.L. Cao, Corrosion behaviors of reinforcing steel in concrete with various moisture contents. Key Eng. Mater. 805, 100–105 (2019). [CrossRef] [Google Scholar]
  14. J.M. Du, X.L. Han, Z.T. Li, G. Li, Y.S. Ji, Effects of water-cement ratio on concrete sulfate corrosion rate. Key Eng. Mater. 711 295–301 (2016). [CrossRef] [Google Scholar]
  15. F. Lollini, M. Carsana, M. Gastaldi, E. Redaelli, Corrosion behaviour of stainless steel reinforcement in concrete. Corros. Rev. 37(1), 3–19 (2019). [CrossRef] [Google Scholar]
  16. J.J. Saire Yanez, Morphology and detection of corrosion on stainless steel reinforcement in concrete. MS Thesis, Department of Civil and Environmental Engineering, University of South Florida, USA (2019). https://digitalcommons.usf.edu/etd/7922 [Google Scholar]
  17. J. Ducasse-Lapeyrusse, V. Bouteiller, E. Marie-Victoire, M. Bouichou, G. Damien, V. Martinet, C. Annede-Villeau, O. Lesieutre, Assessment of the impressed current cathodic protection system after 4 years operation: case study of the Saint-Cloud Viaduct (France). Case Stud. Constr. Mater. 18, e02023 (2023). [Google Scholar]
  18. A. Goyal, H.S. Pouya, E. Ganjian, A.O. Olubanwo, M. Khorami, Predicting the corrosion rate of steel in cathodically protected concrete using potential shift. Constr. Building. Maters. 194, 344–349 (2019). [CrossRef] [Google Scholar]
  19. M.A. Deyab, Q. Mohsen, Inhibitory capabilities of sweet yellow capsicum extract toward the rusting of steel rebars in cement pore solution. ACS Omega. 8(3), 3303–3309 (2023). [CrossRef] [Google Scholar]
  20. A. Giri, M. Gautam, R. Roka, N.P. Bhattarai, J. Bhattarai, Performance of anticorrosive measures of steel in concrete infrastructure by plant-based extracts. Macromol. Symp. 410(1), 2200115 (2023). [CrossRef] [Google Scholar]
  21. E.F. Olasehinde, E.B. Agbaffa, M.A. Adebayo, E.O. Abata, Corrosion inhibition of mild steel in 1 M HCl by methanolic Chromolaena odorata leaf extract: Experimental and theoretical studies. J. Bio-Tribo-Corros. 8, 105 (2022). [CrossRef] [Google Scholar]
  22. M.M. Muzakir, F.O. Nwosu, S.O. Amusat, Mild steel corrosion inhibition in a NaCl solution by lignin extract of Chromolaena odorata. Port. Electrochim. Acta 37(6), 359–372 (2019). [CrossRef] [Google Scholar]
  23. M. Rana, S. Joshi, J. Bhattarai, Extract of different plants of Nepalese origin as green corrosion inhibitor for mild steel in 0.5 M NaCl solution. Asian J. Chem. 29(5), 1130–1134 (2017). [CrossRef] [Google Scholar]
  24. K. Amgain, B.N. Subedi, S. Joshi, J. Bhattarai, A comparative study of the anticorrosive response of Tinospora cordifolia stem extract for Al and Cu in biodiesel-based fuels. E3S Web Conf. 355, 01005 (2022). [Google Scholar]
  25. B.N. Subedi, K. Amgain, S. Joshi, J. Bhattarai, Green approach to corrosion inhibition effect of Vitex negundo leaf extract on aluminum and copper metals in biodiesel and its blend. Intl. J. Corros. Scale Inhib. 8(3), 744–759 (2019). [Google Scholar]
  26. M. Gautam, L. Gupta, N. Pandey, N.P. Bhattarai, J. Bhattarai, Synergism of blended extract of Ageratum houstonianum and Chromolaena odorata leaves on the corrosion inhibitor of reinforced steel in concrete (to be published NanoWorld J.). [Google Scholar]
  27. R. Ganjoo, C. Verma, A. Thakur, A. AlFantazi, H. Assad, S. Sharma, S. Dubey, A. Kumar, Mannich bases: Chemical structure, chemistry, coordination bonding and application in aqueous phase corrosion protection. J. Ind. Eng. Chem. 131, 136–166 (2024). [CrossRef] [Google Scholar]
  28. S. Zehra, M. Mobin, J. Aslam, Chromates as corrosion inhibitors. Inorg. Anticorros. Mater. 131, 251–268 (2021). [Google Scholar]
  29. P. Magrati, D.B. Subedi, D.B. Pokharel, J. Bhattarai, Appraisal of different inorganic inhibitors action on the corrosion control mechanism of mild steel in HNO3 solution. J. Nepal Chem. Soc. 41(1), 64–73 (2020). [CrossRef] [Google Scholar]
  30. A.A. Al-Amiery, W.N. Isahak, W.K. Khalid, Corrosion inhibitors: natural and synthetic organic inhibitors. Lubricants. 11(4), 174 (2023). [CrossRef] [Google Scholar]
  31. B.E. Brycki, I.H. Kowalczyk, A. Szulc, O. Kaczerewska, M. Pakiet, Organic corrosion inhibitors, InTech (2018). [Google Scholar]
  32. B. Vaghefinazari, E. Wierzbicka, P. Visser, R. Posner, R. Arrabal, E. Matykina, … . S.V. Lamaka, Chromate-free corrosion protection strategies for magnesium alloys -a review: Part III-Corrosion inhibitors and combining them with other protection strategies. Materials 15, 23 (2022). [Google Scholar]
  33. D.B. Pokharel, D.B. Subedi, J. Bhattarai, Study the effect of sodium nitrite as a green inhibitor for the sputter-deposited tungsten-based ternary alloys in 0.5 M NaCl solution. Bibechana 12, 1–12 (2015). [Google Scholar]
  34. M. Karaoui, A. Zarrouk, R. Hsissou, M. Alami, M. Assouag, Performance of organic molecules as corrosion inhibitors for CS: a comprehensive review. Anal. Bioanal. Electrochem. 14(6), 535–556 (2022). [Google Scholar]
  35. A.O. Alao, A.P. Popoola, M.O. Dada, O. Sanni, Utilization of green inhibitors as a sustainable corrosion control method for steel in petrochemical industries: a review. Front. Ener. Res. 10, 1063315 (2023). [CrossRef] [Google Scholar]
  36. J.O. Okeniyi, C.A. Loto, A.P.I. Popoola, Corrosion inhibition of concrete steel-reinforcement in saline/marine simulating-environment by Rhizophora mangle. Solid State Phenom. 227, 185–189 (2015). [CrossRef] [Google Scholar]
  37. R. Solmaz, A. Salci, Y.A. Dursun, G. Kardas, A comprehensive study on the adsorption, corrosion inhibition efficiency and stability of acriflavine on mild steel in 1 M HCl solution. Colloids Surf., A: Physicochem. Eng. Aspects. 674 (2023) 131908. [Google Scholar]
  38. S. Sharma, X. Ko, Y. Kurapati, H. Singh, S. Nesic, Adsorption behavior of organic corrosion inhibitors on metal surfaces-Some new insights from molecular simulations. Corros. 75(1), 90–105 (2019). [CrossRef] [Google Scholar]
  39. A. Roka, M. Gautam, A. Giri, N.P. Bhattarai, J. Bhattarai, The anti-degradation consequences of water repellent-based inhibitors for controlling mild steel corrosion in concrete composite. E3S Web Conf. 455, 01002 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
  40. K.K. Shah, I. Tiwari, S. Tripathi, S. Subash Subedi, J. Shrestha, Invasive alien plant species: A threat to biodiversity and agriculture in Nepal. Agriways. 8(2), 62–73 (2020). [CrossRef] [Google Scholar]
  41. A. Lamsal, M.P. Devkota, D.S. Shrestha, S. Joshi, A. Shrestha, Seed germination ecology of Ageratum houstonianum: A major invasive weed in Nepal. Plos One. 14(11), e0225430 (2019). [CrossRef] [PubMed] [Google Scholar]
  42. R. Bhatta, P. Sharma, P. Pal, Clinical evaluation of Ageratum houstonianum Mill intoxicated goats. Journal of Agric. For. Univ. 5, 277–283 (2022). [Google Scholar]
  43. P. Pal, Clinico-pathological evaluation of buffalo calves intoxicated with Ageratum houstonianum Mill. M.V.Sc. Thesis, Institute of Agriculture and Animal Science, Tribhuvan University, Rampur, Chitwan, Nepal, (2008). [Google Scholar]
  44. D. El Hadidy, A.M. El Sayed, M. El Tantawy, T. El Alfy, S.M. Farag, D.R. Haleem, Larvicidal and repellent potential of Ageratum houstonianum against culex pipiens. Sci. Rep. 12(1), 1–13 (2022). [Google Scholar]
  45. P. Satyal, A. Poudel, W.N. Setzer, Variation in the volatile phytochemistry of Ageratum conyzoides. Am. J. Essent. Oils Nat. Prod. 6 (2), 7–10 (2018). [Google Scholar]
  46. S. Tennyson, K. Balaraju, K. Park, K.J. Ravindran, A. Eapen, S.J. William, In vitro antioxidant activity of Ageratum houstonianum Mill. (Asteraceae). Asian Pac. J. Trop. Dis. 2, S712-S714 (2011). [Google Scholar]
  47. M. Zeeshan, S.M.D. Rizvi, M.S. Khan, A. Kumar, Isolation, partial purification and evaluation of bioactive compounds from leaves of Ageratum houstonianum. EXCLI J. 11, 78–88 (2012). [Google Scholar]
  48. W.C. Anyanele, S.I. Anyanele, C.S. Ejidike, Comparative study on the phytochemical analysis of the leaves and stem of Ageratum houstonianum Mill. Asian Plant Res. J. 9(2), (2022) 49–55. [Google Scholar]
  49. R. Chahal, A. Nanda, E.K. Akkol, E. Sobarzo-Sanchez, A. Arya, D. Kaushik, R. Dutt, R. Bhardwaj, M.H. Rahman, V. Mittal, Ageratum conyzoides L and its secondary metabolites in the management of different fungal pathogens. Molecules 26, 2933 (2021). [CrossRef] [PubMed] [Google Scholar]
  50. D. El Hadidy, A.M. El Sayed, M. El Tantawy, T. El Alfy, Phytochemical analysis and biological activities of essential oils of the leaves and flowers of Ageratum houstonianum Mill cultivated in Egypt. J. Essent. Oil Bear. Plants. 22(5), 1241–1251 (2019). [Google Scholar]
  51. Z. Wang, S. Zhao, S. Tao, G. Hou, F. Zhao, S.Tan, Q. Meng, Dioscorea spp.: Bioactive compounds and potential for the treatment of inflammatory and metabolic diseases. Molecules (Switzerland). 28(6), 2878 (2023). [Google Scholar]
  52. M. Kim, S. Son, S. Jeon, J. Kim, C. Lee, Metabolite profiling of Dioscorea (Yam) leaves to identify bioactive compounds reveals their potential as renewable resources. Plants 10(8), 1751 (2021). [CrossRef] [PubMed] [Google Scholar]
  53. A. Adomeniene, P.R. Venskutonis, Dioscorea spp.: Comprehensive review of antioxidant properties and their relation to phytochemicals and health benefits. Molecules (Switzerland). 27(8), 2530 (2022). [CrossRef] [Google Scholar]
  54. P. Dey, T.K. Chaudhuri, Phytochemical characterization of Dioscorea alata leaf and stem by silylation followed by GC-MS analysis. J. Food Biochem. 40(4), 630–635 (2016). [CrossRef] [Google Scholar]
  55. R. Singh, D. Prasad, Z. Safi, N. Wazzan, L. Guo, De-scaling, experimental, DFT, and MD-simulation studies of unwanted growing plant as natural corrosion inhibitor for SS-410 in acid medium, Colloids Surf. A. 649, 129333 (2022). [CrossRef] [Google Scholar]
  56. H.K. Idu, B.J. Ifeanyichukwu, N.E. Idenyi, Inhibitive effect of locally Dioscorea spp leaf extracts as a green corrosion inhibitor in selected media. Preprints 2023050217 (2023). [Google Scholar]
  57. ASTM C876–22, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete, in: ASTM International, West Conshohocken, USA, 2022, pp. 8. [Google Scholar]
  58. K. Amgain, B. N. Subedi, S. Joshi, J. Bhattarai, Investigation on the effect of Tinospora cordifolia plant extract as a green corrosion inhibitor to aluminum and copper in biodiesel and its blend. in Proc. CORCON 2018, NIGIS/NACE Publication, Jaipur, India, Paper No. PP–19, 1–11 (2018). [Google Scholar]
  59. J. Bhattarai, M. Rana, M. R. Bhattarai, S. Joshi, Effect of green corrosion inhibitor of Callistemon plant extract on the corrosion behavior of mild steel in NaCl and HCl solutions. in Proc. CORCON 2016. NIGIS/NACE Publication, Paper No. MI-17, 1–8 (2016). [Google Scholar]
  60. P. Katuwal, R. Regmi, S. Joshi, J. Bhattarai, Assessment on the effective green-based Nepal origin plants extract as corrosion inhibitor for mild steel in bioethanol and its blend. Eur. J. Chem. 1(5), 1–12 (2020). [Google Scholar]
  61. M. Somai, A. Giri, A. Roka, J. Bhattarai, Comparative studies on the anti-corrosive action of waterproofing agent and plant extract to steel rebar, Macromol. Symp. 410(1), 2100276 (2023). [CrossRef] [Google Scholar]
  62. J. Bhattarai, A. Kafle, N.P. Bhattarai, The passivation behavior of carbon steel rods of Nepal in different media. J. Nepal Chem. Soc.22, 34–40 (2007). [Google Scholar]
  63. ASTM C1582/C1582M-11, Standard Specification for Admixtures to Inhibit Chloride Induced Corrosion of Reinforcing Steel in Concrete, in: ASTM International, West Conshohocken, USA, 2017, pp. 10. [Google Scholar]
  64. A. Kokalj, On the use of the Langmuir and other adsorption isotherms in corrosion inhibition. Corros. Sci. 217, 111112 (2023). [CrossRef] [Google Scholar]
  65. A. Kokalj, Corrosion inhibitors: Physisorbed or chemisorbed? Corros. Sci. 196, 109939 (2022). [CrossRef] [Google Scholar]
  66. K.D. Alanazi, B.H. Alshammari, T.Y.A. Alanazi, O.A. Alshammari, A.M. Ashmawy, M.M. Aljohani, R.A. Hameed, M.A. Deyab, Green synthesis of a novel cationic surfactant based on an azo schiff compound for use as a carbon steel anticorrosion agent. ACS Omega 8(51), 49009–49016 (2023). [CrossRef] [PubMed] [Google Scholar]
  67. A. Al Bahir, B. Imen, N. Alqarni, Advancing imine metal chelates for corrosion inhibition across diverse environments: a novel perspective. Results Chem. 7, 101455 (2023). [Google Scholar]
  68. E. Safitri, H. Humaira, N. Nazaruddin, S. Susilawati, M. Murniana, N.D. Md Sani, Dioscorea alata L anthocyanin extract methanol as a sensitive pH active compound, Journal of Physics: Conference Series, 1869, 012058 (2021). [CrossRef] [Google Scholar]
  69. A. Sulistiawan, W. Setyaningsih, A. Rohman, A new FTIR method combined with multivariate data analysis for determining aflatoxins in peanuts (Arachis hypogaea), J. Appl. Pharmaceut. Sci. 12(7), 199–206 (2022). [CrossRef] [Google Scholar]
  70. J.B. Asbury, Y. Wang, T. Lian, Time-dependent vibration stokes shift during solvation: experiment and theory. Bull. Chem. Soc. Jpn. 75(5), 973–983 (2002). [CrossRef] [Google Scholar]
  71. M.A. Bedair, A.M. Abuelela, M. Alshareef, M., Owda, E.M. Eliwa, Ethyl ester/acyl hydrazide-based aromatic sulfonamides: facile synthesis, structural characterization, electrochemical measurements and theoretical studies as effective corrosion inhibitors for mild steel in 1.0 M HCl. RSC Adv. 13, 186–211 (2023). [CrossRef] [Google Scholar]
  72. A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and interpret FTIR spectroscopy of organic material, Indones. J. Sci. Technol. 4(1), 97–118 (2019). [CrossRef] [Google Scholar]
  73. A.B.D. Nandiyanto, R. Ragadhita, M. Fiandini, Interpretation of fourier transform infrared spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition. Indones. J. Sci. Technol. 8(1), 113–126 (2023). [Google Scholar]
  74. A. Inan Genc, S. Gok, S. Banerjee, F. Severcan, Valdecoxib recovers the lipid composition, order and dynamics in colon cancer cell lines independent of COX-2 expression: an ATR-FTIR spectroscopy study. Appl. Spectrosc. 71(1), 105–117 (2017). [CrossRef] [PubMed] [Google Scholar]
  75. K.K. Veedu, T.P. Kalarikkal, N. Jayakumar, N.K. Gopalan, Anticorrosive performance of Mangifera indica L. leaf extract-based hybrid coating on steel. ACS Omega 4(6), 10176–10184 (2019). [CrossRef] [PubMed] [Google Scholar]
  76. J.E. Eziuka, I.B. Onyeachu, D.I. Njoku, S.C. Nwanonenyi, M.A. Chidiebere, E.F. Oguzie, Elucidating the inhibition behavior of Pterocarpus santalinoides leaves extract on mild steel corrosion in H2SO4 solution–GC-MS, FTIR, SEM, experimental and computational approach. Moroccan J. Chem. 11(3), 579–593 (2023). [Google Scholar]
  77. F. Odutayo, C. Ezeamagu, T. Kabiawu, D. Aina, G. Mensah-Agyei, Phytochemical screening and antimicrobial activity of Chromolaena odorata leaf extract against selected microorganisms. J. Adv. Med. Pharm. Sci. 13(4), 1–9 (2017). [CrossRef] [Google Scholar]
  78. S.K. Chandraker, M. Lal, M.K. Ghosh, V. Tiwari, T.K. Ghorai, R. Shukla, Green synthesis of copper nanoparticles using leaf extract of Ageratum houstonianum Mill. and study of their photocatalytic and antibacterial activities. Nano Express. 1(1), 010033 (2020). [CrossRef] [Google Scholar]
  79. S. Rudito, Y. Witono, B. Saragih, E.T. Arung, Phytochemical and antioxidant analysis offermented ‘Dayak’ wild yam (Dioscorea hispidaDennst), purple yam (Dioscorea alata) and airpotato (Dioscorea bulbiferaL.) tuber flour. IOP Conf. Ser.: Earth Environ. Sci.810, 012005 (2021). [CrossRef] [Google Scholar]
  80. N.H. Ismail, N.A. Hamid, W.Z.W.M. Zain, S.N.H.M. Latip, F. Hamzah, S.N.A. Aani, Analysis of bioactive compounds from the leaves part of Melastoma malabatrichum, Clidemia hirta, Chromolaena odorata, and Ageratum conyzoides by gas chromatography-mass spectrometry. IOP Conf. Ser.: Earth Environ. Sci. 1114, 012027 (2022). [CrossRef] [Google Scholar]
  81. D. El Hadidy, A.M. El Sayed, M. El Tantawy & T. El Alfy, Phytochemical analysis and biological activities of essential oils of the leaves and flowers of Ageratum houstonianum Mill. cultivated in Egypt. J. Essent. Oil Bear. Plants. 22(5), 1241–1251 (2019). [CrossRef] [Google Scholar]
  82. D. Rinaldo, H. Sotin, D. Petro, G. Le-Bail, S. Guyot, Browning susceptibility of new hybrids of yam (Dioscorea alata) as related to their total phenolic content and their phenolic profile determined using LC-UV-MS. LWT. 162, 113410 (2022). [Google Scholar]
  83. V. Lebot, R. Malapa, T. Molisale, Development of HP-TLC method for rapid quantification of sugars, catechins, phenolic acids and saponins to assess Yam (Dioscorea spp.) tuber flour quality. Plant Genet. Resour. 17(1), 62–72 (2019). [CrossRef] [Google Scholar]
  84. J. Kwon, H. Choi, S. Yoo, Y. Choi, E. Lee, D. Park, Development of an analytical method for yam saponins using HPLC with pulsed amperometric detection at different column temperatures. J. Sep. Sci. 36(4), 690–698 (2013). [CrossRef] [PubMed] [Google Scholar]
  85. R.C. Sriramadasu, Y. Lu, S. Banerjee, Identification of incipient pitting corrosion in reinforced concrete structures using guided waves and piezoelectric wafer transducers. Struct. Health Monit. 18(1), 164–171 (2018). [Google Scholar]
  86. D.V.P. Tran, P. Sancharoen, P. Klomjit, S. Tangtermsirikul, Electrical resistivity and corrosion potential of reinforced concrete: Influencing factors and prediction models. J. Adhes. Sci. Technol. 34(19), 2107–2119 (2020). [CrossRef] [Google Scholar]
  87. M.F. Gromboni, A. Sales, M.D.A. Rezende, J.P. Moretti, P.G. Corradini, L.H. Mascaro, Impact of agro-industrial waste on steel corrosion susceptibility in media simulating concrete pore solutions. J. Cleaner Prod. 284, 124697 (2021). [CrossRef] [Google Scholar]
  88. E. El Alami, F. Fekak, L. Garibaldi, A. Elkhalfi, A numerical study of pitting corrosion in RC structures. J. Build. Eng. 43, 102789 (2021). [CrossRef] [Google Scholar]
  89. S. Jafri, Z. Khalid, M. Khan, N. Jogezai, Evaluation of phytochemical and antioxidant potential of various extracts from traditionally used medicinal plants of Pakistan. Open Chem. 20(1), 1337–1356 (2022). [CrossRef] [Google Scholar]
  90. A. Royani, V.S. Aigbodion, M. Hanafi, N.M. Mubarak, C. Verma, A. Alfantazi, Azwar Manaf, Enhancing the corrosion inhibition performance of Tinospora cordifolia extract using different fractions of methanol solvent on carbon steel corrosion in a seawater-simulated solution. Appl. Surf. Sci. Adv. 18, 100465 (2023). [CrossRef] [Google Scholar]
  91. Q. Ma, Q Yang, J. Zhang, F. Ren, C. Xia, F. Chen, Anti-corrosion properties of bio-inspired surfaces: a systematic review of recent research developments. Mater. Adv. 5, 2689–2718 (2024). [CrossRef] [Google Scholar]
  92. I.N. Etim, J. Dong, J. Wei, C. Nan, D.B. Pokharel, A.J. Umoh, D. Xu, M. Su, W. Ke, Effect of organic silicon quaternary ammonium salts on mitigating corrosion of reinforced steel induced by SRB in mild alkaline simulated concrete pore solution. J. Mater. Technol. 64, 126–140 (2021). [CrossRef] [Google Scholar]
  93. H.S. Wong, U.M. Angst, M.R. Geiker, O.B. Isgor, B. Elsener, A. Michel, … … R. Polder, Methods for characterizing the steel–concrete interface to enhance understanding of reinforcement corrosion: a critical review by RILEM TC 262-SCI. Mater. Struct. 55, 124(2022). [CrossRef] [Google Scholar]
  94. L. Bocian, R. Novotny, F. Soukal, J. Palovcik, M. Brezina, J. Koplik, Influence of anticorrosive surface treatment of steel reinforcement fibers on the properties of ultra-high performance cement composite. Mater. 15(23), 8401(2022). [CrossRef] [Google Scholar]
  95. C. Verma, A.H. Al-Moubaraki, A. Alfantazi, K.Y. Rhee, Heterocyclic amino acids-based green and sustainable corrosion inhibitors: Adsorption, bonding and corrosion control. J. Cleaner Prod. 446, 141186 (2024). [CrossRef] [Google Scholar]
  96. A.A. Abed, A. Mojtahedi, M.A. Lotfollahi-Yaghin, New concrete composites incorporated with calcium acetate as admixture: The impact of curing age on strength and the effect of temperature on water absorption. E3S Web Conf. 405, 03015 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
  97. C.G. Vaszilcsin, M.V. Putz, A. Kellenberger, M.L. Dan, On the evaluation of metal-corrosion inhibitor interactions by adsorption isotherms. J. Mol. Struct. 1286, 135643 (2023). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.