Open Access
Issue
E3S Web of Conf.
Volume 559, 2024
2024 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2024)
Article Number 03013
Number of page(s) 14
Section Renewable Energy & Electrical Technology
DOI https://doi.org/10.1051/e3sconf/202455903013
Published online 08 August 2024
  1. Ma, Gang, et al. “Study on the impact of electric vehicle charging load on nodal voltage deviation.” Archives of Electrical Engineering 66.3 (2017): 495-505. [CrossRef] [Google Scholar]
  2. Desai A, Patel CR. “Leveraging GIS to deploy demand-driven public charging infrastructure in an Indian Metropolitan city.” Spatial Information Research. 2023;31(4):467-474. doi:10.1007/s41324-023-00514-4. [CrossRef] [Google Scholar]
  3. Bilal M, Rizwan M. “Intelligent Algorithm based Efficient Planning of Electric Vehicle Charging Station: A Case Study of Metropolitan City of India.” Scientia Iranica. 2021;0(0):0. doi:10.24200/sci.2021.57433.5238. [Google Scholar]
  4. Chavhan S, Zeebaree SRM, Alkhayyat A, Kumar S. “Design of space efficient electric vehicle charging infrastructure integration impact on power grid network.” Mathematics. 2022;10(19):3450. doi:10.3390/math10193450. [CrossRef] [Google Scholar]
  5. Singh S, Chauhan P, Singh NJ. “Feasibility of Grid-connected Solar-wind Hybrid System with Electric Vehicle Charging Station.” Journal of Modern Power Systems and Clean Energy. 2021;9(2):295-306. doi:10.35833/mpce.2019.000081. [CrossRef] [Google Scholar]
  6. Mateen S, Amir M, Haque A, Bakhsh FI. “Ultra-fast charging of electric vehicles: A review of power electronics converter, grid stability and optimal battery consideration in multi-energy systems.” Sustainable Energy, Grids and Networks. 2023;35:101112. doi:10.1016/j.segan.2023.101112. [CrossRef] [Google Scholar]
  7. Ahmad F, Shariff SM, Krishnamurthy M. “A Cost-Efficient Approach to EV Charging Station Integrated Community Microgrid: A case study of Indian Power market.” IEEE Transactions on Transportation Electrification. 2019;5(1):200-214. doi:10.1109/tte.2019.2893766. [CrossRef] [Google Scholar]
  8. Y. Wu and L. Zhang, “Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries?”, Transportation Research Part D: Transport and Environment, vol. 51, pp. 129-145, 2017. [CrossRef] [Google Scholar]
  9. H. Yu and A. Stuart, “Impacts of compact growth and electric vehicles on future air quality and urban exposures may be mixed”, Science of The Total Environment, vol. 576, pp. 148-158, 2017. [CrossRef] [Google Scholar]
  10. R. Diewvilai, R. Nidhiritdhikrai and B. Eua-arporn, “Reserve margin evaluation for generation system using probabilistic based method,” The 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand - Conference 2011, Khon Kaen, 2011, pp. 905-908. [Google Scholar]
  11. P. C. Sekhar, R. A. Deshpande and V. Sankar, “Evaluation and improvement of reliability indices of electrical power distribution system,” 2016 National Power Systems Conference (NPSC), Bhubaneswar, 2016, pp. 1-6. [Google Scholar]
  12. T. Van Cutsem, “Voltage instability: phenomena, countermeasures, and analysis methods”, Proceedings of the IEEE, vol. 88, no. 2, pp. 208-227, 2000. [CrossRef] [Google Scholar]
  13. J. BIAN and P. RASTGOUFARD, “Measures Of Voltage Instability And Voltage Collapse, PART I: Theoretical Development”, Electric Machines & Power Systems, vol. 23, no. 4, pp. 361-374, 1995. [Google Scholar]
  14. T. J. Browne and G. T. Heydt, “Power Quality as an Educational Opportunity,” in IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 814-815, May 2008. [CrossRef] [Google Scholar]
  15. T. S. Ustun, C. R. Ozansoy and A. Zayegh, “Implementing Vehicle-toGrid (V2G) Technology With IEC 61850-7-420,” in IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 1180-1187, June 2013. [CrossRef] [Google Scholar]
  16. P. Kundur, N. Balu and M. Lauby, Power system stability and control. New York: McGraw-Hill, 2009. [Google Scholar]
  17. P. Kessel and H. Glavitsch, “Estimating the Voltage Stability of a Power System,” in IEEE Power Engineering Review, vol. PER-6, no. 7, pp. 72-72, July 1986. [CrossRef] [Google Scholar]
  18. P. Kessel and H. Glavitsch, “Estimating the Voltage Stability of a Power System,” in IEEE Power Engineering Review, vol. PER-6, no. 7, pp. 72-72, July 1986. [CrossRef] [Google Scholar]
  19. H. Dharmakeerthi, N. Mithulananthan, and T. K. Saha, “Impact of electric vehicle load on power system oscillatory stability,” Australasian Universities Power Engineering Conference (AUPEC), Hobart, TAS, Australia, pp. 1-6. IEEE, September 2013. [Google Scholar]
  20. Ul-Haq, C. Cecati, K. Strunz, and E. Abbasi, “Impact of EV Charging on Voltage Unbalance in an Urban Distribution Network,” Intelligent Industrial Systems, vol. 1, pp. 51-60, June 2015. [CrossRef] [Google Scholar]
  21. P. Papadopoulos, L. M. Cipcigan and N. Jenkins, “Distribution Networks with Electric Vehicles”, Universities Power Engineering Conference. Glasgow: IEEE, 2009: 1-5. [Google Scholar]
  22. Nikhil Garwa, Khaleequr Rehman Niazi, “Impact of EV on Integration with Grid System – A Review” published December 2019 in 2019 8th International Conference on Power Systems (ICPS), doi:10.1109/icps48983.2019.9067587. [Google Scholar]
  23. McCarthy and P. Wolfs, “The HV system impacts of large scale electric vehicle deployments in a metropolitan area,” 2010 20th Australasian Universities Power Engineering Conference, Christchurch, 2010, pp. 1-6. [Google Scholar]
  24. G. A. Putrus, P. Suwanapingkarl, D. Johnston, E. C. Bentley and M. Narayana, “Impact of electric vehicles on power distribution networks,” 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, 2009, pp. 827-831. [Google Scholar]
  25. L.A. Kszos, J.J. Beauchamp, A.J. Stewart, Toxicity of Lithium to Three Freshwater Organisms and the Antagonistic Effect of Sodium, Ecotoxicology 12(5) (2003) 427-437. [CrossRef] [PubMed] [Google Scholar]
  26. Shahzad, M. Tanveer, W. Hassan, A.N. Shah, S.A. Anjum, S.A. Cheema, I. Ali, Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities – A review, Plant Physiol. Biochem. 107 (2016) 104-115. [CrossRef] [Google Scholar]
  27. M. Tanveer, L. Wang, Potential targets to reduce beryllium toxicity in plants: A review, Plant Physiol. Biochem. 139 (2019) 691-696. [CrossRef] [Google Scholar]
  28. Marra F, Yang G, Larsen E, Rasmussen C, You S, “Demand profile study of battery electric vehicle under different charging options”, IEEE. July 2012. doi:10.1109/pesgm.2012.6345063. [Google Scholar]
  29. Sanchari Deb, Karuna Kalita, Pinakeshwar Mahanta, “Review of impact of electric vehicle charging station on the power grid”. IEEE Conference Publication — IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/8397215. [Google Scholar]
  30. Wang S, Zhang N, Li Z, Shahidehpour M. “Modeling and impact analysis of large scale V2G electric vehicles on the power grid”. IEEE. May 2012. doi:10.1109/isgtasia.2012.6303372. [Google Scholar]
  31. Carter R, Cruden A, Hall P. “Optimizing for Efficiency or Battery Life in a Battery/Supercapacitor Electric Vehicle”. IEEE Transactions on Vehicular Technology. 2012;61(4):1526-1533. doi:10.1109/tvt.2012.2188551. [CrossRef] [Google Scholar]
  32. Rizvi STH, Xin A, Masood A, Iqbal S, Jan MU, Rehman H. “Electric Vehicles and their Impacts on Integration into Power Grid: A Review.” IEEE. October 2018. doi:10.1109/ei2.2018.8582069. [Google Scholar]
  33. Sayed MA, Atallah R, Assi C, Debbabi M. “Electric vehicle attack impact on power grid operation”. International Journal of Electrical Power and Energy Systems. 2022;137:107784. doi:10.1016/j.ijepes.2021.107784. [CrossRef] [Google Scholar]
  34. Go´mez JC, Morcos MM. “Impact of EV battery chargers on the power quality of distribution systems.” IEEE Transactions on Power Delivery. 2003;18(3):975-981. doi:10.1109/tpwrd.2003.813873. [CrossRef] [Google Scholar]
  35. Mallig N, Heilig M, Weiß C, Chlond B, Vortisch P. “Modelling the weekly electricity demand caused by electric cars.” Future Generation Computer Systems. 2016;64:140-150. doi:10.1016/j.future.2016.01.014. [CrossRef] [Google Scholar]
  36. Bao K, Li S, Zheng H. “Battery charge and discharge control for energy management in EV and utility integration.” IEEE. July 2012. doi:10.1109/pesgm.2012.6344719. [Google Scholar]
  37. Deilami S, Muyeen SM. “An Insight into Practical Solutions for Electric Vehicle Charging in Smart Grid.” Energies. 2020;13(7):1545. doi:10.3390/en13071545. [CrossRef] [Google Scholar]
  38. Tran QT, Nguyen-Van L. Integration of electric vehicles into an industrial grid: “Impact assessment and solutions.” IEEE. July 2016. doi:10.1109/pesgm.2016.7741309. [Google Scholar]
  39. Van Der Burgt J, Vera SP, Wille-Haussmann B, Andersen AN, Tambjerg LH. “Grid impact of charging electric vehicles; study cases in Denmark, Germany and The Netherlands.” IEEE. June 2015. doi:10.1109/ptc.2015.7232234. [Google Scholar]
  40. Goel S, Sharma R, Rathore AK. “A review on barrier and challenges of electric vehicle in India and vehicle to grid optimisation.” Transportation Engineering. 2021;4:100057. doi:10.1016/j.treng.2021.100057. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.