Open Access
Issue
E3S Web of Conf.
Volume 559, 2024
2024 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2024)
Article Number 04004
Number of page(s) 15
Section Structural Engineering & Concrete Technology
DOI https://doi.org/10.1051/e3sconf/202455904004
Published online 08 August 2024
  1. Seyedhosseini, S. M. & Ghoreyshi, S. M. An Integrated Model for Production and Distribution Planning of Perishable Products with Inventory and Routing Considerations. Math Probl Eng 2014, 1–10 (2014). [CrossRef] [Google Scholar]
  2. Wang, X., Wang, M., Ruan, J. & Zhan, H. The Multi-objective Optimization for Perishable Food Distribution Route Considering Temporal-spatial Distance. Procedia Comput Sci 96, 1211–1220 (2016). [CrossRef] [Google Scholar]
  3. B. Deniz. Essays on perishable inventory management. Business, Engineering (2007). [Google Scholar]
  4. Gelenbe, E. & Wang, Y. Supply Chains for Perishable Goods and G-networks. in 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA) 167–172 (IEEE, 2019). doi:10.1109/ICIEA.2019.8834361. [Google Scholar]
  5. Bradley, R. L. & Goentzel, J. Simulating tomorrow’s supply chain today. in Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC) 1–12 (IEEE, 2012). doi:10.1109/WSC.2012.6465143. [Google Scholar]
  6. Tarantilis, C. D. & Kiranoudis, C. T. A meta-heuristic algorithm for the efficient distribution of perishable foods. J Food Eng 50, 1–9 (2001). [CrossRef] [Google Scholar]
  7. Dolgui, A., Tiwari, M. K., Sinjana, Y., Kumar, S. K. & Son, Y.-J. Optimising integrated inventory policy for perishable items in a multi-stage supply chain. Int J Prod Res 56, 902–925 (2018). [CrossRef] [Google Scholar]
  8. Rymarczyk, T. & Kłosowski, G. Supply chain risk management by monte carlo method. Informatics Control Measurement in Economy and Environment Protection 7, 20–23 (2017). [CrossRef] [Google Scholar]
  9. Belvardi, G. Monte Carlo Simulation Based Performance Analysis of Supply Chains. International Journal of Managing Value and Supply Chains 3, 1–15 (2012). [CrossRef] [Google Scholar]
  10. La Scalia, G., Micale, R., Miglietta, P. P. & Toma, P. Reducing waste and ecological impacts through a sustainable and efficient management of perishable food based on the Monte Carlo simulation. Ecol Indic 97, 363–371 (2019). [CrossRef] [Google Scholar]
  11. Ozkan, O. & Kilic, S. A Monte Carlo Simulation for Reliability Estimation of Logistics and Supply Chain Networks. IFAC-PapersOnLine 52, 2080–2085 (2019). [CrossRef] [Google Scholar]
  12. Klug, F. Automotive supply chain logistics: container demand planning using Monte Carlo simulation. International Journal of Automotive Technology and Management 11, 254 (2011). [CrossRef] [Google Scholar]
  13. Liu, A., Zhu, Q., Xu, L., Lu, Q. & Fan, Y. Sustainable supply chain management for perishable products in emerging markets: An integrated location-inventory-routing model. Transp Res E Logist Transp Rev 150, 102319 (2021). [CrossRef] [Google Scholar]
  14. Bharti, A. Supply Chain Management and Strategy Implementation for Perishable Goods. in 152–169 (2016). doi:10.4018/978-1-4666-9894-9.ch009. [Google Scholar]
  15. Deng, X., Yang, X., Zhang, Y., Li, Y. & Lu, Z. Risk propagation mechanisms and risk management strategies for a sustainable perishable products supply chain. Comput Ind Eng 135, 1175–1187 (2019). [CrossRef] [Google Scholar]
  16. Yang, S., Xiao, Y. & Kuo, Y.-H. The Supply Chain Design for Perishable Food with Stochastic Demand. Sustainability 9, 1195 (2017). [CrossRef] [Google Scholar]
  17. Ekanayake, C., Bandara, Y. M., Chipulu, M. & Chhetri, P. An order fulfilment location planning model for perishable goods supply chains using population density. Supply Chain Analytics 4, 100045 (2023). [CrossRef] [Google Scholar]
  18. Schmitt, A. J. & Singh, M. Quantifying supply chain disruption risk using Monte Carlo and discrete-event simulation. in Proceedings of the 2009 Winter Simulation Conference (WSC) 1237–1248 (IEEE, 2009). doi:10.1109/WSC.2009.5429561. [Google Scholar]
  19. Blackburn, J. & Scudder, G. Supply Chain Strategies for Perishable Products: The Case of Fresh Produce. Prod Oper Manag 18, 129–137 (2009). [CrossRef] [Google Scholar]
  20. Chung, S. H. & Kwon, C. Integrated supply chain management for perishable products: Dynamics and oligopolistic competition perspectives with application to pharmaceuticals. Int J Prod Econ 179, 117–129 (2016). [CrossRef] [Google Scholar]
  21. Biuki, M., Kazemi, A. & Alinezhad, A. An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network. J Clean Prod 260, 120842 (2020). [CrossRef] [Google Scholar]
  22. Soysal, M., Bloemhof-Ruwaard, J. M., Haijema, R. & van der Vorst, J. G. A. J. Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty. Int J Prod Econ 164, 118–133 (2015). [CrossRef] [Google Scholar]
  23. Rossi, T., Pozzi, R., Pirovano, G., Cigolini, R. & Pero, M. A new logistics model for increasing economic sustainability of perishable food supply chains through intermodal transportation. International Journal of Logistics Research and Applications 24, 346– 363 (2021). [CrossRef] [Google Scholar]
  24. Tamir, T. S. et al. Traffic Congestion Prediction using Decision Tree, Logistic Regression and Neural Networks. IFAC-PapersOnLine 53, 512–517 (2020). [CrossRef] [Google Scholar]
  25. Chen, Y.-T., Sun, E. W., Chang, M.-F. & Lin, Y.-B. Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0. Int J Prod Econ 238, 108157 (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.