Open Access
Issue
E3S Web of Conf.
Volume 559, 2024
2024 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2024)
Article Number 04040
Number of page(s) 9
Section Structural Engineering & Concrete Technology
DOI https://doi.org/10.1051/e3sconf/202455904040
Published online 08 August 2024
  1. Nwaila, G. T.; Frimmel, H. E.; Zhang, S. E.; Bourdeau, J. E.; Tolmay, L. C. K.; Durrheim, R. J.; et al. The minerals industry in the era of digital transition: An energy-efficient and environmentally conscious approach. Resources Policy 2022, 78, 102851. doi:10.1016/j.resourpol.2022.102851 [CrossRef] [Google Scholar]
  2. Utepov, Y.; Aniskin, A.; Tulebekova, A.; Aldungarova, A.; Zharassov, S.; Sarsembayeva, A. Complex Maturity Method for Estimating the Concrete Strength Based on Curing Temperature, Ambient Temperature and Relative Humidity. Applied Sciences 2021, 11(16), 7712. doi:10.3390/app11167712 [CrossRef] [Google Scholar]
  3. Utepov, Y. Potential application of an automatic sewer monitoring system based on sensors. International Journal of GEOMATE 2023, 25(109). doi:10.21660/2023.109.3929 [CrossRef] [Google Scholar]
  4. Nuguzhinov, Zh. S.; Mukhamejanova, A. T.; Tokanov, D. T.; Koishybay, Z.; Zhumadilova, N. Z.; Beketova, M. S. Comprehensive study of the basses and foundations of furnaces No. 61, 63 of the melting shop No. 6 of the Aksu Ferroalloy Plant in connection with the renovation. In Smart Geotechnics for Smart Societies; CRC Press: London, 2023; pp 1309–1313. doi:10.1201/9781003299127-190 [Google Scholar]
  5. Ali, I.; Ahmed, S.; Khoso, S.; Sohu, S.; Bhatti, N.-K.; Naqash, M. T. Environmental impact assessment on shear strength characteristics of soil. 2023, 30(1). [Google Scholar]
  6. Prolygin, A.; Dolgih, G.; Aleksandrov, A. Influence of Moisture Content of Loamy Soil on Shear Resistance Parameters. In Networked Control Systems for Connected and Automated Vehicles. Guda, A., Ed.; Springer International Publishing: Cham, 2023; Vol. 509, pp 863–872. doi:10.1007/978-3-031-11058-0_87 [CrossRef] [Google Scholar]
  7. Khazratov, A. N.; Bazarov, O. Sh.; Jumayev, A. R.; Bobomurodov, F. F.; Mamatov, N. Z. Influence of cohesion strength in cohesive soils onchannel bed erosion. E3S Web of Conferences 2023, 410, 05018. doi:10.1051/e3sconf/202341005018 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Malizia, J. P.; Shakoor, A. Effect of water content and density on strength and deformation behavior of clay soils. Engineering Geology 2018, 244, 125–131. doi:10.1016/j.enggeo.2018.07.028 [CrossRef] [Google Scholar]
  9. Firoozi, A. A.; Firoozi, A. A.; Baghini, M. S. A Review of Clayey Soils. 2016, 04(06), 1319–1330. [Google Scholar]
  10. Puzrin, A. M.; Burland, J. B. Kinematic hardening plasticity formulation of small strain behaviour of soils. International Journal for Numerical and Analytical Methods in Geomechanics 2000, 24(9), 753–781. doi:10.1002/1096-9853(20000810)24:9<753::AID-NAG97>3.0.CO;2-2 [CrossRef] [Google Scholar]
  11. Magdi M. E. Zumrawi, M. E.; Mohammed, L. A. D. Scientific Research and Innovation for Sustainable Development in Africa. 2016, No. 7th Annual Conference for Postgraduate Studies and Scientific Research. [Google Scholar]
  12. Cai, G.-Q.; Zhao, C.-G.; Qin, X.-M. Structural bonding-breakage constitutive model for natural unsaturated clayey soils. Acta Mechanica Sinica 2010, 26(6), 931–939. doi:10.1007/s10409-010-0375-y [CrossRef] [Google Scholar]
  13. Rohrer, G. S. Structure and Bonding in Crystalline Materials; 1st ed.; Cambridge University Press, 2001. doi:10.1017/CBO9780511816116 [CrossRef] [Google Scholar]
  14. Liu, E. L.; Shen, Z. J. Experimental Study on the Mechanical Behavior and Destructured Process of Artificially, Structured Soils in Triaxial Compression. In Ground Modification and Seismic Mitigation; American Society of Civil Engineers: Shanghai, China, 2006; pp 57–64. doi:10.1061/40864(196)9 [Google Scholar]
  15. Matsushi, Y.; Matsukura, Y. Cohesion of unsaturated residual soils as a function of volumetric water content. Bulletin of Engineering Geology and the Environment 2006, 65(4), 449–455. doi:10.1007/s10064-005-0035-9 [CrossRef] [Google Scholar]
  16. Morozov, A.; Shapovalov, V.; Popov, Y.; Kochur, A.; Yavna, V. Effect of mechanical impact on the microstructure and IR spectra of cohesive soil. Vibrational Spectroscopy 2023, 128, 103582. doi:10.1016/j.vibspec.2023.103582 [CrossRef] [Google Scholar]
  17. Ping, X.; Zhou, G.; Zhuang, Q.; Wang, Y.; Zuo, W.; Shi, G.; et al. Effects of sample size and position from monolith and core methods on the estimation of total root biomass in a temperate grassland ecosystem in Inner Mongolia. Geoderma 2010, 155(3–4), 262– 268. doi:10.1016/j.geoderma.2009.12.009 [CrossRef] [Google Scholar]
  18. Wan-Mohamad, W. N. S.; Abdul-Ghani, A. N. The Use of Geographic Information System (GIS) for Geotechnical Data Processing and Presentation. Procedia Engineering 2011, 20, 397–406. doi:10.1016/j.proeng.2011.11.182 [CrossRef] [Google Scholar]
  19. Utepov, Y.; Neftissov, A.; Mkilima, T.; Shakhmov, Z.; Akhazhanov, S.; Kazkeyev, A.; et al. Advancing sanitary surveillance: Innovating a live-feed sewer monitoring framework for effective water level and chamber cover detections. Heliyon 2024, 10(6), e27395. doi:10.1016/j.heliyon.2024.e27395 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.