Open Access
Issue |
E3S Web Conf.
Volume 561, 2024
The 8th International Conference on Energy, Environment and Materials Science (EEMS 2024)
|
|
---|---|---|
Article Number | 02016 | |
Number of page(s) | 10 | |
Section | Intelligent Environment Planning and Green Development | |
DOI | https://doi.org/10.1051/e3sconf/202456102016 | |
Published online | 09 August 2024 |
- HOU, B.R., LU, DZ. Corrosion Cost and Preventive Strategies in China[J].Bulletin of Chinese Academy of Sciences,2018,33(06):601–609. [Google Scholar]
- HOU, B.R, LI X.G, MA X.M, et al. The cost of corrosion in China. npj materials degradation 1, 1–10 (2017). [Google Scholar]
- Wang, G.Y, SHU, QM. Studies on Corrosion Data Accumlation, Corrosion and Protection of Materials in Atmosphere, Sea Water, Soil Environments[J]. Bulletin of National Natural Science Foundation of China,1992,(01):40–45. [Google Scholar]
- FAN, Z.B, LI, XG, WANG XM, et al. A Review of Regional Atmospheric Corrosion Maps[J]. Journal of Chinese Society for Corrosion and Protection,2023,43(01):29–37. [Google Scholar]
- Tang Qh, Zhang XY. Mapping of Typical Atmospheric Corrosion at Home and Abroad[J]. Equipment Environmental Engineering, 2010, 7(04):81–85. [Google Scholar]
- Li XG, Zhang DW, Liu ZY, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527(7579): 441–442. [CrossRef] [PubMed] [Google Scholar]
- Liu, C, Tang, QH, Wang, W, et al. Applicability of Atmospheric Corrosion Rate Prediction Equation for Carbon Steel of Standard ISO 9223—2012 in Typical Areas of China[J]. Equipment Environmental Engineering, 2017, 14(10): 74–77. [Google Scholar]
- Wang, L, Mou, XL, Zhu, L, et al.Review of Atmospheric Corrosivity Classification[J]. Equipment Environmental Engineering, 2010, 7(06):24–27. [Google Scholar]
- MIKHAILOV AA, TIDBLAD J, KUCERA V. The classification system of ISO 9223 standard and the dose-response functions assessing the corrosivity of outdoor atmospheres [J]. Protection of metals, 2004, 40(6): 541–550. [CrossRef] [Google Scholar]
- Arjwech R, Everett ME, Schulmeister MK. Soil salinity mapping of an urbanizing area in NE Thailand [J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2020, 53(3): 413–424.. [CrossRef] [Google Scholar]
- Zhou, J.Z., HE, X.M, Sun, K.T, et al. Research Status of Corrosion and Monitoring Protection of Transmission Lines in Serious Corrosion Area [J].Corrosion and Protection, 2021, 42(04):1–8. [Google Scholar]
- SHAW T.R. Corrosion Map of the British Isles, In Atmospheric Factors Affecting the Corrosion of Engineering Metals. ASTM International 1978,6464, 204–215. [Google Scholar]
- Reiss D, Rihm B, Thoni C, et al. Mapping stock at risk and release of zinc and copper in Switzerland—dose response functions for runoff rates derived from corrosion rate data[J]. Water, Air, (b) and Soil Pollution, 2004, 159(1): 101–113. [CrossRef] [Google Scholar]
- Chico B, Fuente D, Vega JM, et al. Corrosivity maps of Spain for zinc in rural atmospheres. Revista De Metalurgia, 2010, 46:485–492. [CrossRef] [Google Scholar]
- Martina I, Peter K, Miroslav B. Air pollution as an important factor in construction materials deterioration in Slovak Republic[J]. Procedia Engineering, 2015,108:131–138. [CrossRef] [Google Scholar]
- Henriksen, JF, MIKHAILOV AA. Atmospheric Corrosion Tests of Metals in SO2-Polluted Cold Atmosphere in Northern Norway and along Its Border with Russia[J]. Protection of metals, 2002,108(6):579–589. [CrossRef] [Google Scholar]
- COSTA JM, and VILARRASA M. Corrosion mapping for Catalonia, Spain[J]. Key Engineering Materials, 1988, 20: 35–44. [Google Scholar]
- SANTANA JJ, SANTANA J, GONZALEZ JE, et al. Atmospheric corrosivity map for steel in Canary Isles[J]. British corrosion journal 2001, 36(4): 266–271. [CrossRef] [Google Scholar]
- Wallinder IO, Bahar B, Leygraf C, et al. Modelling and mapping of copper runoff for Europe[J]. Journal of Environmental Monitoring, 2007, 9(1): 66–73. [CrossRef] [PubMed] [Google Scholar]
- Kambezidis H.D,Kalliampakos G. Mapping atmospheric corrosion on modern materials in the Greater Athens area[J]. Water, Air, & Soil Pollution, 2013,224:1463. [CrossRef] [Google Scholar]
- De La Fuente D., Vega JM, VIEJO F, et al. Mapping air pollution effects on atmospheric degradation of cultural heritage[J]. Journal of cultural heritage, 2013, 14(2):138–145. [CrossRef] [Google Scholar]
- Karaca, F. Mapping the corrosion impact of air pollution on the historical peninsula of Istanbul[J]. Journal of Cultural Heritage 2013,14(2):129–137. [CrossRef] [Google Scholar]
- Kreislova K, Geiplova H, Skorepova I, et al. Method for creation of actual maps of atmospheric corrosivity for the Czech Republic[J]. European Corrosion Congress, EUROCORR, 2015,3:1833–1839. [Google Scholar]
- Neocleous K, CHRISTOFE A, AGAPIOU A, et al. Digital mapping of corrosion risk in coastal urban areas using remote sensing and structural condition assessment: case study in Cyprus[J]. Open Geosciences, 2016, 8(1):662–674. [CrossRef] [Google Scholar]
- PANCHENKO Y.M, MARSHAKOV AI, NIKOLAEVA LA, et al. Comparative estimation of long-term predictions of corrosion losses for carbon steel and zinc using various models for the Russian territory[J]. Corrosion Engineering, Science and Technology, 2017, 52(2):149–157. [CrossRef] [Google Scholar]
- VIDAL F, VICENTE R, BASTOS AC, et al. Atmospheric corrosion in two different urban environments in Portugal: results of one-year exposure[J]. Corrosion Engineering, Science and Technology, 2019, 54(7):614–626. [CrossRef] [Google Scholar]
- MALDONADO L, VELEVA L. Corrosivity category maps of a humid tropical atmosphere: the Yucatan Peninsula, Mexico[J]. Materials and Corrosion, 1999,50:261–266. [CrossRef] [Google Scholar]
- CASTILLO-MIRANDA JO, RODRIGUEZGOMEZ F.J. Mapping of the cost of atmospheric corrosion of zinc and galvanised steel due to the effect of atmospheric pollution in the Mexico City Metropolitan area [J]. Corrosion Engineering, Science and Technology 2022, 57(5): 408–419. [CrossRef] [Google Scholar]
- VERA R, Delgado D, Araya R, et al. Construcción de mapas de corrosión atmosférica de chile. Resultados preliminares[J] Revista Latinoamericana de Metalurgia y Materiales, 2012,32(2): 269–276. [Google Scholar]
- SICA YC, KENNY ED, PORTELLA KF, et al. Atmospheric corrosion performance of carbon steel, galvanized steel, aluminum and copper in the North Brazilian coast[J]. Journal of the Brazilian Chemical Society, 2007, 18:153–166. [CrossRef] [Google Scholar]
- SPENCE JW, MCHENRY J.N. Development of regional corrosion maps for galvanized steel by linking the RADM engineering model with an atmospheric corrosion model[J]. Atmospheric Environment, 1994, 28(18):3033–3046. [CrossRef] [Google Scholar]
- RINCON AR, FERNANDEZ M, LOZIZA E. Measurement of pollution atmospheres in a tropical region and its atmospheric corrosivity maps[J]. Corrosion Reviews, 2000, 18(6):473–488. [CrossRef] [Google Scholar]
- Hawthorn GA, Hihara LH. Corrosivity Mapping Of The Pacific Theater Of Operations[J]. Corrosion, 2008,08198. [Google Scholar]
- Vera R, Puentes M, Araya R, et al. Atmospheric corrosion map of Chile: results after one year of exposure[J]. Revista de la Construcción, 2012,11:61–72. [CrossRef] [Google Scholar]
- Rodriguez Yanez JE, ARCE LG, LEIVA ES. Maps estimates of atmospheric corrosion of low alloy steel in Costa Rica. Cuadernos de Investigación UNED, 2015, 7(2):181–191. [Google Scholar]
- Li ZW, MARSTON NJ, JONES MS. Re-assessment of New Zealand Atmospheric Corrosivity[J]. Annual Conference of the Australasian Corrosion Association, 2013, 383–394. [Google Scholar]
- WANG, ZY, CHEN, HC, YU, GC, et al. An Investigation on Atmospheric Corrosiveness in Hainan Province[J]. Journal of Chinese Society for Corrosion and Protection, 2009, 16(3): 225–229. [Google Scholar]
- HUANG JC, MENG XB, ZHENG ZJ, et al. Optimization of the atmospheric corrosivity mapping of Guangdong Province[J]. Materials and Corrosion, 2019, 70(1), 91–101. [CrossRef] [Google Scholar]
- FAN ZB, Li XG, JIANG B, et al. Mapping atmospheric corrosivity in shandong[J]. Water, Air, & Soil Pollution, 2020, 231(12):569. [CrossRef] [Google Scholar]
- Kim Y, Lim H, Kim J, et al. Corrosion cost and corrosion map of Korea-Based on the Data from 2005 to 2010 [J]. Corrosion Science and Technology, 2011, 10(2): 52–59. [Google Scholar]
- Pongsalsawad W, Klomjit P, Khamsuk P, et al. Chloride distribution model and corrosion map of structural steels for tropical climate in Thailand[J]. Science of the Total Environment, 2021, 787: 147465. [CrossRef] [Google Scholar]
- KUMAR VN, and SIL A. Assessment and spatial mapping of atmospheric corrosion amelioration using empirical equation considering environmental parameters[J]. Corrosion Engineering, Science and Technology 2020, 55(5): 400–410. [CrossRef] [Google Scholar]
- Hao WK, Chen X, Xu LL, et al.Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J].Journal of Chinese Society for Corrosion and Protection, 2023, 43(04):795–802. [Google Scholar]
- San PT, Hong HL. Results of studying atmospheric corrosion in Vietnam 1995-2005[J]. Science and Technology of Advanced Materials, 2007, 8:552–558. [CrossRef] [Google Scholar]
- Shalaby HM, Ai-Sabti F, Ai-Muhanna K. Atmospheric Corrosion Mapping of Kuwait[J]. Corrosion, 2007, 07342. [Google Scholar]
- Ghanbarzadeh A, Neshati J, Bagherzadeh MR. Atmospheric corrosion map of an oil refinery[J]. Anti-Corrosión Methods and Materials, 2013, 60(2):106–114. [CrossRef] [Google Scholar]
- Ganther WD, Cole IS, Helal AM, et al. Towards the development of a corrosion map for Abu Dhabi[J]. Materials and Corrosion, 2011, 62(11):1066–1073. [CrossRef] [Google Scholar]
- WU, PS, HSIEH CM, HSU MF. Using heritage risk maps as an approach to estimating the threat to materials of traditional buildings in Tainan (Taiwan)[J]. Journal of Cultural Heritage, 2014, 15(4):441–447. [CrossRef] [Google Scholar]
- Shiri M, Rezakhani D. Estimated and stationary atmospheric corrosion rate of carbon steel, galvanized steel, copper and aluminum in Iran[J]. Metallurgical and Materials Transactions A, 2020, 51:342–367. [CrossRef] [Google Scholar]
- Huzni S, Affandi, Tanjung I, et al. Atmospheric corrosion map of structural steel in industrial area: a preliminary investigation[J], IOP Conf. Series: Materials Science and Engineering, 2019, 602:012075. [CrossRef] [Google Scholar]
- ZAFAR F, BANO H, MAHMOOD, A, et al. Physicochemical studies of galvanized steel corrosion in urban, industrial, and marine environments, and corrosion mapping of Karachi city: An important coastal city of the 21st-century modern maritime silk route[J]. Materials and Corrosion, 2020, 71(12):2052–2069. [CrossRef] [Google Scholar]
- Das S, Sarkar K. Atmospheric corrosivity map for management of steel infrastructure in India using iso dose-response function and gridded data[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2021,7(1):04020059. [CrossRef] [Google Scholar]
- ZHANG, SQ, YIN, YD, LI, HX, et al. Soil corrosiveness in Liaoning Province[J].Total Corrosion Control, 1996, 3:15–20. [Google Scholar]
- Shen, XM, Qian, ZH, Zhu, LW, et al. Survey on Soil Corrosion of Substations in Zhejiang[J]. Zhejiang Electeic Power,2017, 36(02):53–57. [Google Scholar]
- LI, JY, WANG, Z, CHEN, Y, et al. Beijing-Tianjin-Hebei carbon steel soil corrosion rate map based on BP-GIS [J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(06):1151–1158. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.