Open Access
Issue
E3S Web Conf.
Volume 561, 2024
The 8th International Conference on Energy, Environment and Materials Science (EEMS 2024)
Article Number 02017
Number of page(s) 4
Section Intelligent Environment Planning and Green Development
DOI https://doi.org/10.1051/e3sconf/202456102017
Published online 09 August 2024
  1. ISO. Environmental management—life cycle assessment—requirements and guidelines; 2006. [Google Scholar]
  2. Ian Millera, Emre Gençer et al. Parametric modeling of life cycle greenhouse gas emissions from photovoltaic power. Appl Energy 238(2019): 760–774. [CrossRef] [Google Scholar]
  3. Hou G, Sun H, Jiang Z, Pan Z, Wang Y, Zhang X, et al. Life cycle assessment of grid connected photovoltaic power generation from crystalline silicon solar modules in China. Applied Energy 2016. https://doi.org/10.1016/j.apenergy.2015.11.023. [Google Scholar]
  4. Akinyele DO, Rayudu RK, Nair NKC. Life cycle impact assessment of photovoltaic power generation from crystalline silicon-based solar modules in Nigeria. Renew Energy 2017 ; 101 : 537–49. https://doi.org/10.1016/j.renene.2016.09.017. [CrossRef] [Google Scholar]
  5. Yu Z, Ma W, Xie K, Lv G, Chen Z, Wu J, et al. Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China. Applied Energy 185(2017): 68–81. [CrossRef] [Google Scholar]
  6. Ismael A.S. Ehtiwesh, Margarida C. Coelho, etc. Exergetic and environmental life cycle assessment analysis of concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews Volume 56, April 2016, Pages 145–155. [CrossRef] [Google Scholar]
  7. Thomas Telsnig, Gerhard Weinrebe, etc. Life cycle assessment of a future central receiver solar power plant and autonomous operated heliostat concepts[J]. Solar Energy, Volume 157, 15 November 2017, Pages 187–200. [CrossRef] [Google Scholar]
  8. WANG Chang-bo, ZHANG Li-xiao,PANG Ming-yue. A Review on Hybrid Life Cycle Assessment:Development and Application[J]. JOURNAL OF NATURAL RESOURCES, 2015, 30(7):1232–1242. [Google Scholar]
  9. Shiyu Ji, Bin Chen. Carbon footprint accounting of a typical wind farm in China[J]. Appl Energy 180 (2016): 416–423. [CrossRef] [Google Scholar]
  10. XU Ling, YU Jinghui, CHEN Yu. Carbon emission and energy consumption accounting analysis of wind farm operation[J]. Journal of Dalian Polytechnic University, 2020,39(4), 281–288. [Google Scholar]
  11. MA Yi, DUAN Huabo, LI Qiangfeng, and XIE Minghui. Benefits of GHGs emission reduction of Wind farm based on life cycle assessment[J]. JOURNAL OF SHENZHEN UNIVERSITY SCIENCE AND ENGINEERING, 2020, 37(6), 653–660. [CrossRef] [Google Scholar]
  12. JI Shiyu, GAo Chao, CHEN Bin, Ll Shengnan. Carbon emission accounting for wind farm based on life cycle assessmentt[J]. ACTA ECOLOGICA SINICA, 2016, 36(4), 915–923. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.