Open Access
Issue
E3S Web Conf.
Volume 563, 2024
International Conference on Environmental Science, Technology and Engineering (ICESTE 2024)
Article Number 02007
Number of page(s) 13
Section Civil Engineering
DOI https://doi.org/10.1051/e3sconf/202456302007
Published online 30 August 2024
  1. UN-HabitatWorld Cities Report 2020: The Value of Sustainable Urbanization (Nairobi: United Nations Human Settlements Programme) (2020) [Google Scholar]
  2. Okeke F.O., Ezema E.C., Nnaemeka-Okeke R.C., Okosun A.E., Okeke C.A., Architectural design response to population issue in sub-Saharan cities. E3S Web of Conferences 434, 02005 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  3. United Nations 2022 The Sustainable Development Goals Report 2022 (New York: United Nations) [Google Scholar]
  4. Durdyev S., Zavadskas E. K., Thurnell D., Banaitis A. and Ihtiyar, A., Sustainable construction industry in Cambodia: Awareness, drivers and barriers. Sustainability 10, 392 (2018) [CrossRef] [Google Scholar]
  5. Darko A., Chan A. P., Ameyaw E. E., He B. J. and Olanipekun A.O., Examining issues influencing green building technologies adoption: The United States green building experts' perspectives. Energy and Buildings 144, 320–332 (2017) [CrossRef] [Google Scholar]
  6. Kibert C.J., Sustainable Construction: Green Building Design and Delivery 4th ed (Hoboken, NJ: John Wiley & Sons) (2016) [Google Scholar]
  7. Pomponi F. and Moncaster, A., Circular economy for the built environment: A research framework Journal of Cleaner Production 143 710–718 (2017) [CrossRef] [Google Scholar]
  8. Esa M.R., Halog A. and Rigamonti, L., Strategies for minimizing construction and demolition wastes in Malaysia Resources. Conservation and Recycling 120, 219–229 (2017) [CrossRef] [Google Scholar]
  9. Posani M., Veiga M.D.R., Peixoto de Freitas, V., Kompatscher, K. and Schellen, H. Dynamic hygrothermal models for monumental, historic buildings with HVAC systems: Complexity shown through a case study. E3S Web of Conferences 172, 15007 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  10. Viel M., Collet F. and Lanos, C., Development and characterization of thermal insulation materials from renewable resources. Construction and Building Materials 214, 685–697 (2019) [CrossRef] [Google Scholar]
  11. Nguyen D. M., Grillet A., Diep T.M.H., Bui, Q., Woloszyn, M., Characterization of hygrothermal insulating biomaterials modified by inorganic adsorbents. Heat and Mass Transfer 56, 2473–2485 (2020) [CrossRef] [Google Scholar]
  12. Hung Anh L.D. and Pásztory, Z., An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering 44, 102604 (2021) [CrossRef] [Google Scholar]
  13. Moreno P., Villamizar N., Perez J., Bayona A., Roman J., Moreno N. and Cardozo N.S.M. Fire-resistant cellulose boards from waste newspaper, boric acid salts and protein binders. Clean Technologies and Environmental Policy 23, 1537–1546 (2021) [CrossRef] [Google Scholar]
  14. Aisien F.A., Amenaghawon N.A. and Onyekezine F.D., Roofing sheets produced from cassava stalks and corn cobs: Evaluation of physical and mechanical properties. International Journal of Scientific Research in Knowledge 1, 521–527 (2013) [CrossRef] [Google Scholar]
  15. Rachtanapun P., Sattayarak T. and Ketsamak, N., Correlation of density and properties of particleboard from coffee waste with urea–formaldehyde and polymeric methylene diphenyl diisocyanates. Journal of Composite Materials 46, 1839–1850 (2012) [CrossRef] [Google Scholar]
  16. Lee S.H. et al., Particleboard from agricultural biomass and recycled wood waste: a review. Journal of Materials Research and Technology 20, 4630–4658 (2022) [CrossRef] [Google Scholar]
  17. Mohsen R.M., Abdel-Mohsen F. F., Deghiedy N.M. and Abu-Ayana Y.M., Review on the manufacture of particleboard from agro-wastes using different adhesives. Egyptian Journal of Chemistry 57, 165–176 (2014) [CrossRef] [Google Scholar]
  18. Baharuddin M.N.M., Zain N.M., Harun W.S.W., Roslin E.N., Ghazali F.A. and Md Som S.N., Development and performance of particleboard from various types of organic waste and adhesives: A review. International Journal of Adhesion and Adhesives 124, 103378 (2023) [CrossRef] [Google Scholar]
  19. Benachio G.L.F., do Freitas M.C.D. and Tavares S.F., Circular economy in the construction industry: A systematic literature review. Journal of Cleaner Production 260, 121046 (2020) [CrossRef] [Google Scholar]
  20. Loehr R.C., Agricultural Waste Management: Problems, Processes, and Approaches (New York: Elsevier) (1978) [Google Scholar]
  21. Food and Agriculture Organization of the United Nations FAOSTAT (2021) [Google Scholar]
  22. Sims R.E.H., Maguire A., Biomass and resources Bioenergy Options for a Cleaner Environment: In Developed and Developing Countries, Oxford, Elsevier 1–28 (2005) [Google Scholar]
  23. European Commission Agri-waste streams in the EU (2020) [Google Scholar]
  24. Saini J.K., Saini R., Tewari L., Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments 3. Biotech 5, 337–353 (2015) [Google Scholar]
  25. Mahmood H., Moniruzzaman M., Yusup S. and Welton, T., Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials. Green Chemistry 19, 2051–2075 (2017) [CrossRef] [Google Scholar]
  26. Haron G.A.S., Mahmood H., Bin Noh H., Goto M. and Moniruzzaman, M., Cellulose nanocrystals preparation from microcrystalline cellulose using ionic liquid-DMSO binary mixture as a processing medium. Journal of Molecular Liquids 346, 118208 (2022) [CrossRef] [Google Scholar]
  27. Gadde B., Bonnet S., Menke C. and Garivait, S., Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution 157, 1554–1558 (2009) [CrossRef] [Google Scholar]
  28. Li J., Bo Y. and Xie, S., Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products. Journal of Environmental Sciences 44, 158–170 (2016) [CrossRef] [Google Scholar]
  29. Okeke F.O., Eziyi I.O., Udeh C.A. and Ezema E.C., City as habitat; assembling the fragile city. Civil Engineering Journal 6, 1143–1154 (2020) [CrossRef] [Google Scholar]
  30. Yadav S., Stubble burning: A problem for the environment, agriculture and humans. Down To Earth (2019) [Google Scholar]
  31. Papargyropoulou E., Lozano R., Steinberger J.K., Wright N. and bin Ujang, Z., The food waste hierarchy as a framework for the management of food surplus and food waste. Journal of Cleaner Production 76, 106–115 (2014) [CrossRef] [Google Scholar]
  32. Sawatdeenarunat C., Surendra K.C., Takara D., Oechsner H. and Khanal S.K., Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology 178, 178–186 (2015) [CrossRef] [PubMed] [Google Scholar]
  33. Ahmad M., Rajapaksha A.U., Lim J.E., Zhang M., Bolan N., Mohan D., Vithanage M., Lee S.S. and Ok Y.S., Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19–33 (2014) [CrossRef] [PubMed] [Google Scholar]
  34. European Commission Directive 2008/98/EC of the European Parliament on waste and repealing certain Directives Official. Journal of the European Union L. 312, 3–30 (2008) [Google Scholar]
  35. Mary L.C. and Thachil E.T., Particleboard from cashew nut shell liquid. Polymers and Polymer Composites 15, 75–82 (2007) [CrossRef] [Google Scholar]
  36. Kubler H., Wood as a Building and Hobby Material (New York: Wiley and Sons Inc) (1977) [Google Scholar]
  37. Kayode J., Conservation implications of timber supply pattern in Ekiti State, Nigeria. Research Journal of Forestry 1, 86–90 (2007) [CrossRef] [Google Scholar]
  38. FAO. Global Forest Resources Assessment 2020: Main report. Food and Agriculture Organization of the United Nations (2020) [Google Scholar]
  39. Stark N.M., Cai Z. and Carll, C. Wood-based composite materials: Panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials Wood Handbook: Wood as an Engineering Material Forest Service, Forest Products Laboratory, Madison, WI: U.S. Department of Agriculture 11(1), 11–28 (2010) [Google Scholar]
  40. Cai Z. and Ross R.J., Mechanical properties of wood-based composite materials Wood Handbook: Wood as an Engineering Material Forest Service, Forest Products Laboratory, Madison, WI: U.S. Department of Agriculture 1210-1212 (2010) [Google Scholar]
  41. Green S. Systematic review and meta-analysis Singapore Medical Journal 46, 270–274 (2005) [Google Scholar]
  42. Falagas M.E., Pitsouni E.I., Malietzis G.A. and Pappas, G., Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. The FASEB Journal 22, 338–342 (2008) [CrossRef] [PubMed] [Google Scholar]
  43. Basta A.H., El-Saied H., Lotfy V.F., Effects of denaturisation of rice bran and route of synthesis of RB-modified UF adhesive system on eco-performance of agro-based composites. Pigment & Resin Technology 45, 456–464 (2016) [Google Scholar]
  44. Fiorelli J., Galo R.D., Castro Junior S.L., Savastano Junior H., Rossignolo J.A. and Nascimento M.F., Multilayer particleboard produced with green coconut and sugarcane bagasse fibers. Construction and Building Materials 205, 1–9 (2019) [CrossRef] [Google Scholar]
  45. Garzón N., Hernández-Molina M.A., González-Hernández P. and Medina J.A., Durability evaluation of agro-industrial waste-based particleboards using accelerated aging cycling tests Journal of Cleaner Production 43, 1–6 (2012) [Google Scholar]
  46. Campos A.C.M., Hein P.R.G., Mendes R.F., Mendes L.M., Chaix G., Near infrared spectroscopy to evaluate composition of agro-based particleboards. BioResources 4, 1058–1069 (2009) [CrossRef] [Google Scholar]
  47. Battegazzore D., Alongi J., Frache A., Wågberg L., Carosio F., Layer by Layer-functionalized rice husk particles: A novel and sustainable solution for particleboard production Materials Today Communications 13, 92–101 (2017) [Google Scholar]
  48. Huang X., Kocaefe D., Kocaefe Y., Boluk Y. and Pichette, A., Preparation and evaluation of particleboard from insect rearing residue and rice husks using starch/citric acid mixture as a natural binder Industrial Crops and Products 152, 112446 (2020) [Google Scholar]
  49. Hidayat D., Purwanto H., Wibowo S., Hadiyane A., Performance of eco-friendly particleboard from agroindustrial residues bonded with formaldehyde-free natural rubber latex adhesive for interior applications. Journal of Wood Science 68, 1–12 (2022) [CrossRef] [Google Scholar]
  50. Mayer-Laigle C., Haurie Ibarra L., Breysse A., Palumbo M., Mabille F., Lacasta Palacio A.M., Barron C., Preserving the Cellular Tissue Structure of Maize Pith Though Dry Fractionation Processes: A Key Point to Use as Insulating Agro-Materials. Materials 14, 5350 (2021) [CrossRef] [PubMed] [Google Scholar]
  51. Fatima Haq F., Mahmood H., Iqbal T., Measam Ali M., Jafar Khan M., Moniruzzaman M., Development of sustainable biocomposite panels assisted with deep eutectic solvent pretreatment of agro-industrial residue. Journal of Molecular Liquids 367, 120417 (2022) [CrossRef] [Google Scholar]
  52. Ercan M., Yeşil T., Ertaş M. and Çolak, M., Characterization of formaldehyde emission and combustion properties of peanut (Arachis hypogaea) husk-based green composite panels for building applications. BioResources 16, 127–141(2021) [Google Scholar]
  53. Nasser R.A., Al-Mefarrej H.A. and Ghaleb A.Q., Mechanical analysis of bamboo and agro industrial residue one-layer particleboard. Alexandria Engineering Journal 59, 4731–4739 (2020) [Google Scholar]
  54. de Souza M.J.C., de Melo R. R., Guimarães J.B., de Carnaval TKB, A., Pimenta A.S., Mascarenhas A.R.P., Wood–cement boards with addition of coconut husk Wood Material. Science & Engineering 17, 617–626 (2021) [Google Scholar]
  55. Narciso C.R.P., Reis A.H.S., Mendes J.F., Nogueira N.D. and Mendes R.F., Potential for the use of coconut husk in the production of medium density particleboard Waste and Biomass. Valorization 10, 2291–2302 (2019) [Google Scholar]
  56. Guan R., Tang Y., Zhang W., Zhang X., Wu Z., Liu S., Properties of binderless bamboo particleboards derived from biologically fermented bamboo green residues. Construction and Building Materials 321, 126322 (2022) [Google Scholar]
  57. Lee S., Shupe T.F. and Hse C.Y., Mechanical and physical properties of agro-based fiberboard. Holz als Roh- und Werkstoff 64, 74–79 (2006) [CrossRef] [Google Scholar]
  58. Khorami M., Sobhani J., An experimental study on the flexural performance of agro-waste cement composite boards International. Journal of Civil Engineering 11, 207–216 (2013) [Google Scholar]
  59. Jové-Sandoval F., García-Baños E.M., Barbero-Barrera M.M., Characterisation and thermal improvement of adobe walls from earth-straw lightweight panels. MRS Advances (2023) [Google Scholar]
  60. Loh Y.R., Sujan D., Rahman M.E. and Das C.A., Sugarcane bagasse—The future composite material: A literature review Resources, Conservation and Recycling 75, 14–22 (2013) [CrossRef] [Google Scholar]
  61. Mendes C.A., Adnet F.A.O., Leite M.C.A.M., Furtado C.R.G. and de Sousa A.M.F., Chemical, physical, mechanical, thermal and morphological characterization of corn husk residue. Cellulose Chemistry & Technology 49, 727–735 (2010) [Google Scholar]
  62. Pode R., Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews 53, 1468–1485 (2016) [CrossRef] [Google Scholar]
  63. van Dam J.E.G., van den Oever M.J.A., Teunissen, W., Keijsers, E.R.P., Peralta, A.G., Process for production of high density/high performance binderless boards from whole coconut husk: Part 1: Lignin as intrinsic thermosetting binder resin. Industrial Crops and Products 19, 207–216 (2004) [Google Scholar]
  64. Taha I., Elkafafy M. and El Mously, H., Potential of utilizing tomato stalk as raw material for particleboards. Ain Shams Engineering Journal 7, 209–216 (2016) [CrossRef] [Google Scholar]
  65. Amenaghawon N.A., Osayuki-Aguebor U.O. and Okieimen C.O., Optimisation of mechanical properties of composite board from corn cobs and cassava stalks: Optimisation of mechanical properties of agro-based particleboard using response surface methodology. Journal of the Indian Academy of Wood Science 13, 105–112 (2016) [Google Scholar]
  66. Borysiuk P., Jenczyk-Tolloczko I., Auriga R. and Kordzikowski, M., Sugar beet pulp as raw material for particleboard production. Industrial Crops and Products 141, 111829 (2019) [CrossRef] [Google Scholar]
  67. Nogueira M.D.S.R., de Figueiredo F.J., de Figueiredo M.Z., Pedroti L.G., de Assis M.R., Souza F.G., Jr. and Druzian J.I., Pressing temperature effect on the properties of medium density particleboard made with sugarcane bagasse and plastic bags. Construction and Building Materials 326, 127037 (2022) [Google Scholar]
  68. de Oliveira Júnior J.N., Lopes F.P.D., Simonassi N.T., Oliveira M.P., Gonçalves F.G., Vieira C.M.F., Evaluation of hot-pressing processing by physical properties of ecofriendly composites reinforced by eucalyptus sawdust and chamotte residues. Polymers 15, 1931 (2023) [CrossRef] [PubMed] [Google Scholar]
  69. Khalil H.A., Awang M.K., Bhat A.H. and Abdullah C.K., Conventional agro-composites from chemically modified fibres. Industrial Crops and Products 26, 315–323 (2007) [CrossRef] [Google Scholar]
  70. Government R.M., Okeke E.T., Oladimeji A.T., Ani A.K., Onukwuli O.D., Odera R.S., Effect of using different chemically modified breadfruit peel fiber in the reinforcement of LDPE composite. Materials Testing 63, 286–292 (2021) [CrossRef] [Google Scholar]
  71. Ali M.H., El-Sayed Mansor E.S.M. and El Nadi S.M., Thermal analyses of loose agave, wheat straw fibers and agave/wheat straw as new hybrid thermal insulating materials for buildings. Journal of Natural Fibers 17, 1424–1438 (2020) [Google Scholar]
  72. Efe F.T. and Alma M.H., Investigating some physical properties of composite board, produced from sunflower stalks, designed horizontally. Advances in Environmental Biology 8, 1877–1881 (2014) [Google Scholar]
  73. Pugazhenthi G. and Anand, P., Investigation of mechanical properties of hybrid medium density fiberboards using coir and sawdust with UF resin. Journal of Natural Fibers 20, 4115–4125 (2023) [Google Scholar]
  74. Temesgen A.G. and Eren, R., A comparative study on the acoustic absorption properties of green synthesis cellulose nano enset fibers. Polymer Bulletin (2023) [Google Scholar]
  75. Silva D.W., Farrapo C.L., Ribeiro D.P., Mendes R.F., Mendes L.M. and Scolforo J.R.S., Do wood-based panels made with agro-industrial residues provide environmentally benign alternatives? An LCA case study of sugarcane bagasse addition to particle board manufacturing Resources, Conservation and Recycling 91, 161–166 (2014) [Google Scholar]
  76. Pang R., Sun F., Zhang X., Liu H., Cao J. and Li, H., Performance and environmental implication assessments of green bio-composite from rice straw and bamboo Resources, Conservation and Recycling 176, 105938 (2022) [CrossRef] [Google Scholar]
  77. Martins E.H., Junior J.B.G., Mendes R.F., Protásio T.D.P., de Andrade C.R. and Mendes L.M., Investigation of agroindustrial lignocellulosic wastes in fabrication of particleboard for construction use. Journal of Building Engineering 35, 102012 (2021) [Google Scholar]
  78. Piccini C., Antunes L.F., Magnago R.F., Belini U.L., Literature review and preliminary analysis of cassava by-products potential use in particleboards. Waste Management & Research 42, 159–166 (2024) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.