Open Access
Issue
E3S Web Conf.
Volume 564, 2024
International Conference on Power Generation and Renewable Energy Sources (ICPGRES-2024)
Article Number 05001
Number of page(s) 9
Section Solar Power Generation Systems
DOI https://doi.org/10.1051/e3sconf/202456405001
Published online 06 September 2024
  1. Gade, C. R. and W. R. Sultana. Battery Electric Tractor Powertrain Component Sizing With Respect To Energy Consumption, Driving Patterns and Performance Evaluation Using Traction Motor. Distributed Generation Alternative Energy Journal. 2023; 789–816-789–816. [Google Scholar]
  2. Salawu, S., A. Obalalu, and S. Okoya. Thermal convection and solar radiation of electromagnetic actuator Cu–Al2O3/C3H8O2 and Cu–C3H8O2 hybrid nanofluids for solar collector optimization. Materials Today Communications. 2022; 33: 104763. [CrossRef] [Google Scholar]
  3. Wahaab, F. A., L. L. Adebayo, A. A. Adekoya, I. G. Hakeem, B. Alqasem, and A. M. Obalalu. Physiochemical properties and electromagnetic wave absorption performance of Ni0. 5Cu0. 5Fe2O4 nanoparticles at X-band frequency. Journal of Alloys Compounds. 2020; 836: 155272. [CrossRef] [Google Scholar]
  4. T. Rawat, J. Singh and S. Sharma, “Performance Analysis of 400 kWp Rooftop Solar Plant at Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur using PVsyst,” 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), Aligarh, India, 2023, pp. 1-6, doi: 10.1109/PIECON56912.2023.10085828. [Google Scholar]
  5. Ahmed, S. E. and A. A. Arafa. Impacts of the fractional derivatives on unsteady magnetohydrodynamics radiative Casson nanofluid flow combined with Joule heating. Physica Scripta. 2020; 95: 095206. [CrossRef] [Google Scholar]
  6. Weiss, M., M. Neelis, M. Zuidberg, and M. Patel. Applying bottom-up analysis to identify the system boundaries of non-energy use data in international energy statistics. Energy. 2008; 33: 1609-1622. [CrossRef] [Google Scholar]
  7. Ochoa, G. V., M. V. Chamorro, and O. C. Silvera. Thermo-economic and sustainability assessment of two solar organic Rankine cycles in the United States. Sustainable Energy Technologies Assessments. 2022; 50: 101758. [CrossRef] [Google Scholar]
  8. Philibert, C. The present and future use of solar thermal energy as a primary source of energy. International Energy Agency. 2005; 1-16. [Google Scholar]
  9. Salawu, S., A. Obalalu, E. Fatunmbi, and M. Shamshuddin. Elastic deformation of thermal radiative and convective hybrid SWCNT-Ag and MWCNT-MoS4 magneto-nanofluids flow in a cylinder. Results in Materials. 2023; 100380. [Google Scholar]
  10. Aytaç, İ., A. D. Tuncer, A. Khanlari, H. İ. Variyenli, S. Mantıcı, L. Güngör, and S. Ünvar. Investigating the effects of using MgO-CuO/water hybrid nanofluid in an evacuated solar water collector: A comprehensive survey. Thermal Science Engineering Progress. 2023; 101688. [Google Scholar]
  11. Dawar, A., Z. Shah, S. Islam, W. Deebani, and M. Shutaywi. MHD stagnation point flow of a water-based copper nanofluid past a flat plate with solar radiation effect. Journal of Petroleum Science Engineering. 2023; 220: 111148. [CrossRef] [Google Scholar]
  12. Liu, H., D. Ji, M. An, A. Kandeal, A. K. Thakur, M. R. Elkadeem, A. M. Algazzar, G. B. Abdelaziz, and S. W. Sharshir. Performance enhancement of solar desalination using evacuated tubes, ultrasonic atomizers, and cobalt oxide nanofluid integrated with cover cooling. Process Safety Environmental Protection. 2023; 171: 98-108. [CrossRef] [Google Scholar]
  13. Kumar Mishra, N., Adnan, K. Ur Rahman, S. M. Eldin, and M. Z. Bani-Fwaz. Investigation of blood flow characteristics saturated by graphene/CuO hybrid nanoparticles under quadratic radiation using VIM: study for expanding/contracting channel. Scientific Reports. 2023; 13: 8503. [CrossRef] [PubMed] [Google Scholar]
  14. Aich, W., G. Sarfraz, N. M. Said, M. Bilal, A. F. A. Elhag, and A. M. Hassan. Significance of radiated ternary nanofluid for thermal transport in stagnation point flow using thermal slip and dissipation function. Case Studies in Thermal Engineering. 2023; 103631. [Google Scholar]
  15. Mishra, N. K., M. U. Sohail, M. Z. Bani-Fwaz, and A. M. Hassan. Thermal analysis of radiated (aluminum oxide)/water through a magnet based geometry subject to Cattaneo-Christov and Corcione’s Models. Case Studies in Thermal Engineering. 2023; 49: 103390. [CrossRef] [Google Scholar]
  16. Rashad, A. M., M. A. Nafe, and D. A. Eisa. Heat variation on MHD Williamson hybrid nanofluid flow with convective boundary condition and Ohmic heating in a porous material. Scientific Reports. 2023; 13: 6071. [CrossRef] [PubMed] [Google Scholar]
  17. Bellout, S. and R. Bessaїh. Mixed convection and entropy production of a hybrid nanofluid in a porous cylindrical enclosure with rotating top wall. Heat Transfer. 2022; 51: 3540-3561. [CrossRef] [Google Scholar]
  18. Salawu, S., A. Obalalu, E. Fatunmbi, A. Disu, and N. Akkurt. Magneto-couple stress of tri-hybrid metallic oxide nanomaterials in porous media with nonlinear properties for thermal technology advancement. Scientific African. 2023; e01841. [Google Scholar]
  19. Obalalu, A., H. Ahmad, S. Salawu, O. Olayemi, C. Odetunde, A. Ajala, and A. Abdulraheem. Improvement of mechanical energy using thermal efficiency of hybrid nanofluid on solar aircraft wings: an application of renewable, sustainable energy. Waves in Random Complex Media. 2023; 1-30. [Google Scholar]
  20. Sajid, T., W. Jamshed, N. M. Katbar, M. R. Eid, A. Abd-Elmonem, N. S. E. Abdalla, S. M. El Din, and G. C. J. C. S. I. T. E. Altamirano. Thermal case classification of solar-powered cars for binary tetra hybridity nanofluid using Cash and Carp method with Hamilton-Crosser model. 2023; 49: 103174. [Google Scholar]
  21. Obalalu, A., M. A. Memon, O. Olayemi, J. Olilima, and A. Fenta. Enhancing heat transfer in solar-powered ships: a study on hybrid nanofluids with carbon nanotubes and their application in parabolic trough solar collectors with electromagnetic controls. Scientific Reports. 2023; 13: 9476. [CrossRef] [PubMed] [Google Scholar]
  22. Vishalakshi, A. B., R. Mahesh, U. S. Mahabaleshwar, A. K. Rao, L. M. Pérez, and D. Laroze. MHD Hybrid Nanofluid Flow over a Stretching/Shrinking Sheet with Skin Friction: Effects of Radiation and Mass Transpiration. Magnetochemistry. 2023; 9: 118. [CrossRef] [Google Scholar]
  23. Madhukesh, J., R. N. Kumar, R. P. Gowda, B. Prasannakumara, G. Ramesh, M. I. Khan, S. U. Khan, and Y.-M. Chu. Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach. Journal of Molecular Liquids. 2021; 335: 116103. [CrossRef] [Google Scholar]
  24. Farooq, U., M. Tahir, H. Waqas, T. Muhammad, A. Alshehri, and M. Imran. Investigation of 3D flow of magnetized hybrid nanofluid with heat source/sink over a stretching sheet. Scientific Reports. 2022; 12: 12254. [CrossRef] [PubMed] [Google Scholar]
  25. Salawu, S., A. Obalalu, E. Fatunmbi, and R. Oderinu. Thermal Prandtl-Eyring hybridized MoS2-SiO2/C3H8O2 and SiO2-C3H8O2 nanofluids for effective solar energy absorber and entropy optimization: A solar water pump implementation. Journal of Molecular Liquids. 2022; 361: 119608. [CrossRef] [Google Scholar]
  26. Anuar, N. S., N. Bachok, and I. Pop. Influence of buoyancy force on Ag-MgO/water hybrid nanofluid flow in an inclined permeable stretching/shrinking sheet. International Communications in Heat Mass Transfer. 2021; 123: 105236. [CrossRef] [Google Scholar]
  27. Hussain, S. M. Dynamics of radiative Williamson hybrid nanofluid with entropy generation: significance in solar aircraft. Scientific Reports. 2022; 12: 1-23. [CrossRef] [PubMed] [Google Scholar]
  28. Obalalu, A., M. A. Memon, S. Saleem, A. Abbas, O. Olayemi, M. R. Ali, R. Sadat, and A. Hendy. Thermal performance of Oldroyd-B hybrid nanofluid in solar energy-based water pumping systems and entropy generation minimization. Case Studies in Thermal Engineering. 2023; 51: 103476. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.