Open Access
Issue
E3S Web Conf.
Volume 564, 2024
International Conference on Power Generation and Renewable Energy Sources (ICPGRES-2024)
Article Number 05002
Number of page(s) 9
Section Solar Power Generation Systems
DOI https://doi.org/10.1051/e3sconf/202456405002
Published online 06 September 2024
  1. A.M. Rashad, M.A. Nafe, D.A. Eisa, Heat generation and thermal radiation impacts on flow of magnetic Eyring-Powell hybrid nanofluid in a porous medium, Arab. J. Sci. Eng. (2022) 1–14. [Google Scholar]
  2. Salawu, S. O., Yusuf, T. A., Obalalu, A. M., & Fatunmbi, E. O. (2024). Thermal radiation and propagation of tiny particles in magnetized Eyring–Powell binary reactive fluid with generalized Arrhenius kinetics. Case Studies in Thermal Engineering, 58, 104409. [CrossRef] [Google Scholar]
  3. E.O. Fatunmbi, S.S. Okoya, Quadratic mixed convection stagnation-point flow in hydromagnetic Casson nanofluid over a nonlinear stretching sheet with variable thermal conductivity, Defect Diffus. 409, 95–109. [Google Scholar]
  4. Fatunmbi EO, Adigun AJ, Salawu SO. Dual stratification mechanism for nonlinear mixed convective Magneto-Tangent Hyperbolic fluid over a stretchable device with activation energy. International Journal of Applied and Computational Mathematics. 2023,;9(4):48.J. [PubMed] [Google Scholar]
  5. T. Rawat, J. Singh and S. Sharma, “Performance Analysis of 400 kWp Rooftop Solar Plant at Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur using PVsyst,” 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), Aligarh, India, 2023, pp. 1-6, doi: 10.1109/PIECON56912.2023.10085828. [Google Scholar]
  6. N. D. Waters and M. J. King, “Unsteady flow of an elastico-viscous liquid,” Rheologica Acta, vol. 9, no. 3, pp. 345–355, 1970. [CrossRef] [Google Scholar]
  7. Khan, I., Imran, M., Fakhar, K. (2011). New exact solutions for an Oldroyd-B fluid in a porous medium. International Journal of Mathematics and Mathematical Sciences, 2011. [Google Scholar]
  8. Oreyeni, T., Oladimeji Akindele, A., Martins Obalalu, A., Olakunle Salawu, S., Ramesh, K. (2023). Thermal performance of radiative magnetohydrodynamic Oldroyd-B hybrid nanofluid with Cattaneo–Christov heat flux model: Solar-powered ship application. Numerical Heat Transfer, Part A: Applications, 85(12), 1954–1972. https://doi.org/10.1080/10407782.2023.2213837. [Google Scholar]
  9. A. Obalalu, A. M., S. O. Salawu, M. A. Memon, O. Olayemi, M. R. Ali, R. Sadat, C. Odetunde, O. Ajala, and A. Akindele. 2023. “Computational Study of Cattaneo–Christov Heat Flux on Cylindrical Surfaces Using CNT Hybrid Nanofluids: A Solar-Powered Ship Implementation.”Case Studies in Ther-mal Engineering 45:102959. [CrossRef] [Google Scholar]
  10. Erratum in: PLoS One. 2014;9(1) Dadheech, A., Sharma, S., Al-Mdallal, Q. Numerical simulation for MHD Oldroyd-B fluid flow with melting and slip effect. Sci Rep 14, 10591 (2024). [Google Scholar]
  11. S. E. E. Hamza, MHD Flow of an Oldroyd–B Fluid through Porous Medium in a Circular Channel under the Effect of Time Dependent Pressure Gradient, American Journal of Fluid Dynamics, Vol. 7 No. 1, 2017, pp. 1-11. [CrossRef] [Google Scholar]
  12. Song, Y. Q., Farooq, A., Kamran, M., Rehman, S., Tamoor, M., Khan, R., …, Qureshi, M. I. (2021). Analytical solution of fractional Oldroyd-B fluid via fluctuating duct. Complexity, 2021, 1-16. [Google Scholar]
  13. Olayemi, O.A.; Obalalu, A.M.; Odetunde, C.B.; Ajala, O.A.: Heat transfer enhancement of magnetized nanofluid flow due toa stretch-able rotating disk with variable thermophysical properties effects. [Google Scholar]
  14. Eur. Phys. J. Plus. 137(3), 1–12 (2022 [CrossRef] [Google Scholar]
  15. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME Publ. Fed. 231 (1995) 99-106. [Google Scholar]
  16. E.O. Fatunmbi et al., Analysis of hydromagnetic micropolar nanofluid flow past a nonlinear stretchable sheet and entropy generation with Navier slips, Int. J. Model. Simul. 19 (2021) 1905490. [Google Scholar]
  17. A.A. Alaidrous, M.R. Eid, 3-D electromagnetic radiative non-Newtonian nanofluid flow with Joule heating and higher-order, reactions in porous materials, Sci. Rep. 10 (2020) 14513. [CrossRef] [Google Scholar]
  18. S.O. Salawu, E.O. Fatunmbi, S.S. Okoya, MHD heat and mass transport of Maxwell Arrhenius kinetic nanofluid flow over stretching surface with nonlinear variable properties, Results Chem. 3 (2021) 100125. [CrossRef] [Google Scholar]
  19. L.A. Lund, Z. Omar, I. Khan, Mathematical analysis of magnetohydrodynamic (MHD) flow of micropolar nanofluid under buoyancy effects past a vertical shrinking surface: dual solutions, Heliyon 5 (2019) e02432. [CrossRef] [PubMed] [Google Scholar]
  20. S.O. Salawu, T.A. Yusuf, A.M. Obalalu, E.O. Fatunmbi. Thermal radiation and propagation of tiny particles in magnetized Eyring–Powell binary reactive fluid with generalized Arrhenius kinetics, Case Studies in Thermal Engineering 58 (2024) 104409. [CrossRef] [Google Scholar]
  21. S.U.S. Choi, Nanofluids: a new field of scientific research and innovative applications, Heat Transf. Eng. 29 (2008) 429-431. [CrossRef] [Google Scholar]
  22. Scott, T. O., Ewim, D. R., & Eloka-Eboka, A. C. (2022). Hybrid nanofluids flow and heat transfer in cavities: A technological review. International Journal of Low-Carbon Technologies, 17, 1104-1123. [CrossRef] [Google Scholar]
  23. M. Z. A. Qureshi, Q. Raza, S. M. Eldin, M. Zafar, B. Ali, I. Siddique. Thermal performance of hybrid magnetized nanofluids flow subject to joint impact of ferro oxides/CNT nanomaterials with radiative and porous factors, Case Studies in Thermal Engineering 41 (2023) 102648. [CrossRef] [Google Scholar]
  24. A. Younis, E. Elsarrag, Y. Alhorr, M. Onsa, The influence of Al2O3ZnOH2O nanofluid on the thermodynamic performance of photovoltaic-thermal hybrid solar collector system, Innov. Ener Res. 7 (2018) 1463-2576. [Google Scholar]
  25. S.K. Verma, A.K. Tiwari, S. Tiwari, D.S. Chauhan, Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid, Sol. Energy.167 (2018) 231-241. [CrossRef] [Google Scholar]
  26. Adnan, K. A. M. A., Ashraf, W., Yassen, M. F., & Jamshed, W. (2023). Applied heat transfer modeling in conventional hybrid (Al2O3-CuO)/C2H6O2 and modified-hybrid nanofluids (Al2O3-CuO-Fe3O4)/C2H6O2 between slippery channel by using least square method (LSM). Future, 1, 1. [CrossRef] [Google Scholar]
  27. Mousavi SM, Esmaeilzadeh F, Wang XP. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behaviour of CuO/MgO/TiO_2 aqueous ternary hybrid nanofluid. J Therm Anal Calorim. 2019;137(3):879–901. DOI:10.1007/s10973-019-08006-0. [CrossRef] [Google Scholar]
  28. Obalalu, A. M., W. F. Alfwzan, M. A. Memon, A. Darvesh, P. Adegbite, A. S. Hendy, and M. R. Ali.2024. “Energy Optimization of Quadratic Thermal Convection on two-Phase Boundary Layer Flow Across a Moving Vertical Flat Plate.”Case Studies in Thermal Engineering, 104073. [Google Scholar]
  29. Obalalu, A. M., M. A. Memon, O. Olayemi, J. Olilima, and A. Fenta.2023.“Enhancing Heat Transfer in Solar-Powered Ships: A Study on Hybrid Nanofluids with Carbon Nanotubes and Their Application in Parabolic Trough Solar Collectors with Electromagnetic Controls.”Scientific Reports 13:9476 [Google Scholar]
  30. Obalalu, A. M., O. A. Olayemi, C. B. Odetunde, and O. A. Ajala.2023. “Signif-icance of Thermophoresis and Brownian Motion on a Reactive Casson-Williamson Nanofluid Past a Vertical Moving Cylinder.”Computational Thermal Sciences: An International Journal 15 (1). [Google Scholar]
  31. H.K. Gupta, G.D. Agrawal, J. Mathur, Investigations for effect of Al2O3–H2O nanofluid flow rate on the efficiency of direct absorption solar collector, Case Stud. Therm. Eng. 5 (2015) 70–78. [CrossRef] [Google Scholar]
  32. G. Alimonti, L. Mariani, F. Prodi, R.A. Ricci, A critical assessment of extreme events trends in times of global warming, Eur. Phys. J. Plus 137 (2022) 1–20. [CrossRef] [Google Scholar]
  33. A.M. Obalalu, M. A. Memon, S. Saleem, A. Abbas, O.A. Olayemi, Mohamed R. Ali, R. Sadat, A.S. Hendy Thermal performance of Oldroyd-B hybrid nanofluid in solar energy-based water pumping systems and entropy generation minimization, Case Studies in Thermal Engineering 51 (2023) 103476. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.