Open Access
Issue
E3S Web Conf.
Volume 564, 2024
International Conference on Power Generation and Renewable Energy Sources (ICPGRES-2024)
Article Number 08005
Number of page(s) 16
Section Energy Management System
DOI https://doi.org/10.1051/e3sconf/202456408005
Published online 06 September 2024
  1. Pelorosso, R. (2020). Modeling and urban planning: A systematic review of performance-based approaches. Sustainable cities and society, 52, 101867. [CrossRef] [Google Scholar]
  2. Agyemang, F. S., & Silva, E. (2019). Simulating the urban growth of a predominantly informal Ghanaian city-region with a cellular automata model: Implications for urban planning and policy. Applied Geography, 105, 15-24. [CrossRef] [Google Scholar]
  3. Abdel‐Basset, M., Manogaran, G., Mohamed, M., & Rushdy, E. (2019). Internet of things in a smart education environment: Supportive framework in the decision‐making process. Concurrency and Computation: Practice and Experience, 31(10), e4515. [CrossRef] [Google Scholar]
  4. De Pascali, P., & Bagaini, A. (2019). Energy Transition and Urban Planning for Local Development. A Critical Review of the Evolution of Integrated Spatial and Energy Planning. Energies, 12(1), 35. [Google Scholar]
  5. Wilson, A., Tewdwr-Jones, M., & Comber, R. (2019). Urban planning, public participation, and digital technology: App development as a method of generating citizen involvement in local planning processes. Environment and Planning B: Urban Analytics and City Science, 46(2), 286-302. [CrossRef] [Google Scholar]
  6. Pluchinotta, I., Esposito, D., & Camarda, D. (2019). Fuzzy cognitive mapping to support multi-agent decisions in development of urban policymaking. Sustainable Cities and Society, 46, 101402. [CrossRef] [Google Scholar]
  7. Appathurai, A., Manogaran, G., & Chilamkurti, N. (2018). Trusted FPGA-based transport traffic inject, impersonate (I2) attacks beaconing in the Internet of Vehicles. IET Networks, 8(2), 106-115. [Google Scholar]
  8. Li, J., & Sun, Z. (2020). Urban Function Orientation Based on Spatiotemporal Differences and Driving Factors of Urban Construction Land. Journal of Urban Planning and Development, 146(3), 05020011. [CrossRef] [Google Scholar]
  9. Berghauser Pont, M., Stavroulaki, G., & Marcus, L. (2019). Development of urban types based on network centrality, built density and their impact on pedestrian movement. Environment and Planning B: Urban analytics and city science, 46(8), 1549-1564. [CrossRef] [Google Scholar]
  10. Pyky, R., Neuvonen, M., Kangas, K., Ojala, A., Lanki, T., Borodulin, K., & Tyrväinen, L. (2019). Individual and Environmental Energy factors associated with green exercise in urban and suburban areas. Health & place, 55, 20-28. [CrossRef] [PubMed] [Google Scholar]
  11. Manogaran, G., Balasubramanian, V., Rawal, B. S., Saravanan, V., Montenegro-Marin, C. E., Ramachandran, V., & Kumar, P. M. (2020). Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems. IEEE Sensors Journal. [Google Scholar]
  12. Hunter, R. F., Cleland, C., Cleary, A., Droomers, M., Wheeler, B. W., Sinnett, D., ... & Braubach, M. (2019). Environmental Energy , health, well-being, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. Environment international, 130, 104923. [CrossRef] [PubMed] [Google Scholar]
  13. Xie, S., Hu, Z., & Wang, J. (2020). Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks. Applied Energy, 261, 114412. [CrossRef] [Google Scholar]
  14. Perera, L., Thompson, R. G., & Wu, W. (2020). A multi-class toll-based approach to reduce total emissions on roads for sustainable urban transportation. Sustainable Cities and Society, 63, 102435. [CrossRef] [Google Scholar]
  15. Al-Mayouf, Y. R. B., Abdullah, N. F., Mahdi, O. A., Khan, S., Ismail, M., Guizani, M., & Ahmed, S. H. (2018). Real-time intersection-based segment aware routing algorithm for urban vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 19(7), 2125-2141. [CrossRef] [Google Scholar]
  16. Yin, Y., Guo, Z., & Tang, Y. (2020, March). Analysis and Thinking of Urban Transportation Planning against the Backdrop of Multi-planning Integration. In IOP Conference Series: Materials Science and Engineering (Vol. 792, No. 1, p. 012002). IOP Publishing. [CrossRef] [Google Scholar]
  17. Asasuppakit, P., & Thiengburanathum, P. (2020). SYSTEM DYNAMICS MODEL OF CO2 EMISSIONS FROM URBAN TRANSPORTATION IN CHIANG MAI CITY. International Journal, 18(68), 209-216. [Google Scholar]
  18. Jolfaei, A., Kant, K., & Shafei, H. (2019, August). Secure data streaming to untrusted road side units in intelligent transportation system. In 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE) (pp. 793-798). IEEE. [Google Scholar]
  19. Barua, L., Zou, B., & Zhou, Y. (2020). Machine learning for international freight transportation management: a comprehensive review. Research in Transportation Business & Management, 34, 100453. [CrossRef] [Google Scholar]
  20. de Luca, S., Di Pace, R., Memoli, S., & Pariota, L. (2020). Sustainable Traffic Management in an Urban Area: An Integrated Framework for Real-Time Traffic Control and Route Guidance Design. Sustainability, 12(2), 726. [CrossRef] [Google Scholar]
  21. Bi, D., Kadry, S., & Kumar, P. M. (2020). Internet of things assisted public security management platform for urban transportation using hybridised cryptographic- integrated steganography. IET Intelligent Transport Systems. [Google Scholar]
  22. Mir, S. H., & Kumar, D. (2020). Analysing the various aspects of traffic congestion by Intelligent Transportation System. International Journal of Progressive Research in Science and Engineering, 1(2), 85-88. [Google Scholar]
  23. Vallejo-Borda, J. A., Cantillo, V., & Rodriguez-Valencia, A. (2020). A perception- based cognitive map of the pedestrian perceived quality of service on urban sidewalks. Transportation research part F: traffic psychology and behaviour, 73, 107-118. [CrossRef] [Google Scholar]
  24. Wang, Q., Lu, M., & Li, Q. (2020). Interactive, multiscale urban-traffic pattern exploration leveraging massive GPS trajectories. Sensors, 20(4), 1084. [CrossRef] [PubMed] [Google Scholar]
  25. Feng, Y., & Tong, X. (2020). A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods. International Journal of Geographical Information Science, 34(1), 74-97. [CrossRef] [Google Scholar]
  26. Zhang, D., Liu, X., Lin, Z., Zhang, X., & Zhang, H. (2020). The delineation of urban growth boundaries in complex ecological environment areas by using cellular automata and a dual-Environmental Energy evaluation. Journal of Cleaner Production, 256, 120361. [PubMed] [Google Scholar]
  27. Wang, W. M., & Peng, H. H. (2020). A Fuzzy Multi-Criteria Evaluation Framework for Urban Sustainable Development. Mathematics, 8(3), 330 [CrossRef] [Google Scholar]
  28. Feleki, E., Vlachokostas, C., & Moussiopoulos, N. (2020). Holistic methodological framework for the characterization of urban sustainability and strategic planning. Journal of Cleaner Production, 243, 118432. [Google Scholar]
  29. Pragathi, B., and P. Ramu. “Authentication Technique for Safeguarding Privacy in Smart Grid Settings.” E3S Web of Conferences. Vol. 540. EDP Sciences, 2024. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.