Open Access
Issue
E3S Web Conf.
Volume 564, 2024
International Conference on Power Generation and Renewable Energy Sources (ICPGRES-2024)
Article Number 11008
Number of page(s) 9
Section Power Engineering and Materials
DOI https://doi.org/10.1051/e3sconf/202456411008
Published online 06 September 2024
  1. H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog., 6, 268-289, (2018) [CrossRef] [Google Scholar]
  2. H. Jouhara, D. Bertrand, B. Axcell, L. Montorsi, M. Venturelli, S. Almahmoud, A. Chauhan. Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery. Energy, 223, (2021) https://doi.org/10.1016/j.energy.2021.120037 [CrossRef] [Google Scholar]
  3. D. Brough, A. Mezquita, S. Ferrer, C. Segarra, A. Chauhan, S. Almahmoud, H. Jouhara. An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger. Energy, 208, (2020) https://doi.org/10.1016/j.energy.2020.118325 [CrossRef] [Google Scholar]
  4. B. Peris, J. Navarro-Esbrí, F. Molés, A. Mota-Babiloni. Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy, 85, 534-542, (2015) [CrossRef] [Google Scholar]
  5. B. Delpech, B.Axcell, H. Jouhara, (2019). Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln. Energy, 170, 636-651, (2019) [CrossRef] [Google Scholar]
  6. B. Delpech, M. Milani, L. Montorsi, D. Boscardin, A. Chauhan, S. Almahmoud, H. Jouhara. Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry. Energy, 158, 656-665, (2018) [CrossRef] [Google Scholar]
  7. C. Gaber, M. Demuth, R. Prieler, C. Schluckner, C. Hochenauer. An experimental study of a thermochemical regeneration waste heat recovery process using a reformer unit. Energy, 155, 381-391, (2018) [CrossRef] [Google Scholar]
  8. B. Egilegor, H. Jouhara, J. Zuazua, F. Al-Mansour, K. Plesnik, L. Montorsi, L. Manzini, (2020). ETEKINA: Analysis of the potential for waste heat recovery in three sectors: Aluminium low pressure die casting, steel sector and ceramic tiles manufacturing sector. Int. J. Thermofluids., 1, (2020) https://doi.org/10.1016/j.ijft.2019.100002 [Google Scholar]
  9. M. Venturelli, D. Brough, M. Milani, L. Montorsi, H. Jouhara, (2021). Comprehensive numerical model for the analysis of potential heat recovery solutions in a ceramic industry. Int. J. Thermofluids., 10, (2021) https://doi.org/10.1016/j.ijft.2021.100080 [CrossRef] [Google Scholar]
  10. E.A. Rad, S. Mohammadi, (2018). Energetic and exergetic optimized Rankine cycle for waste heat recovery in a cement factory. Appl. Therm. Eng., 132, 410-422, (2018) [CrossRef] [Google Scholar]
  11. N. Çiftçi, B. Cicik, A.Y.A.S. Deniz. First Report on the Elemental Composition of the Bigeye Thresher Shark Alopias superciliosus Lowe, 1841 from the Mediterranean Sea. NESciences, 8, 2, 106-118, (2023) [CrossRef] [Google Scholar]
  12. H. Chen, Y. Zhou, S. Cao, X. Li, X.Su, L. An, D. Gao, Heat exchange and water recovery experiments of flue gas with using nanoporous ceramic membranes. Appl. Therm. Eng., 110, 686-694, (2017) [CrossRef] [Google Scholar]
  13. S. Ferrer, A. Mezquita, V.M. Aguilella, E. Monfort. Beyond the energy balance: Exergy analysis of an industrial roller kiln firing porcelain tiles. Appl. Therm. Eng., 150, 1002-1015, (2019) [CrossRef] [Google Scholar]
  14. K.B. Zare, D. Kanchan, N. Patel, Design of double pipe heat exchanger. Int. J. Sci. Technol. Manag., 5, 12, 161-174, (2016) [Google Scholar]
  15. C.E. Ebieto, R.R. Ana, O.E. Nyong, E.G. Saturday. Design and Construction of a Double Pipe Heat Exchanger for Laboratory Application. Eur. j., eng. sci., tech. Res., 5, 11, 1301-1306, (2020) [Google Scholar]
  16. B. Venkatesh, M. Khan, B. Alabduallah, A. Kiran, J.C. Babu, B. Bhargavi, F. Alhayan. Design Optimization of Counter-Flow Double-Pipe Heat Exchanger Using Hybrid Optimization Algorithm. Processes, 11, 6, (2023) https://doi.org/10.3390/pr11061674 [Google Scholar]
  17. A.T. Ozyilmaz. Conducting Polymer Films on Zn Deposited Carbon Electrode. NESciences, 8, 2, 129-139, (2023) [CrossRef] [Google Scholar]
  18. Dionova, B. W., Hendrawati, D., Abdulrazaq, M. N., Vresdian, D. J., Hapsari, A. A., Abdullah, M. I., & Pratama, L. P. (2023). Design and Simulation of Environment Indoor Air Quality Monitoring and Controlling System using IoT Technology. 2023 International Seminar on Intelligent Technology and Its Applications: Leveraging Intelligent Systems to Achieve Sustainable Development Goals, ISITIA 2023 - Proceeding, 494–499. https://doi.org/10.1109/ISITIA59021.2023.10221098 [Google Scholar]
  19. Faizah, S., Nugraha, D., Abdulrazaq, M. N., Dionova, B. W., Abdullah, M. I., & Novianti, L. (2024). A rest tremor detection system based on internet of thing technology. Indonesian Journal of Electrical Engineering and Computer Science, 33(1), 476–484. https://doi.org/10.11591/ijeecs.v33.i1.pp476-484 [CrossRef] [Google Scholar]
  20. Ibrahim, Z., Johar, M. G. M., & Rahman, N. R. A. (2018b). The quality of teamwork on methodology in software development workflow. International Journal of Engineering and Technology(UAE), 7(4), 510–525. https://doi.org/10.14419/ijet.v7i4.28.22641 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.