Open Access
Issue
E3S Web Conf.
Volume 566, 2024
2024 6th International Conference on Environmental Sciences and Renewable Energy (ESRE 2024)
Article Number 01006
Number of page(s) 8
Section Wastewater Treatment and Water Resource Management
DOI https://doi.org/10.1051/e3sconf/202456601006
Published online 06 September 2024
  1. Turkish General Directorate of Meteorology, e-library (mgm.gov.tr), “https://www.mgm.gov.tr/genel/hidrometeoroloji.aspx?s=3#:~:text=D%C3%BCnyam%C4%B1z%C4%B1n%202%2F3%20%C3%BC%20su,tabakalarda%20yeralt%C4%B1%20suyu%20olarak%20bulunur” [Access: 22.03.2024] (In Turkish) [Google Scholar]
  2. S. Corba, Danger for Future: Water Scarcity, Bilim Genc, The Scientific and Technological Research Council of Türkiye, (2021) “https://bilimgenc.tubitak.gov.tr/makale/gelecekteki-tehlike-su-kitligi#:~:text=Bu%20de%C4%9Ferin%201.000%20m3,olan%20%C3%BClkeler%20aras%C4%B1nda%20yer%20al%C4%B1yor” [Access: 22.03.2024] (In Turkish). [Google Scholar]
  3. A. Altin, Modelling Water Amount Entering Dodurga Dam Using Box-Jenkins Technique, Eskişehir Osmangazi University Engineering Architecture Faculty J. 20(1), 81-100. (2007). (In Turkish) [Google Scholar]
  4. D.H. Bae, D.M. Jong, G. Kim, Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique, Hydrological Sciences Journal, 52(1), 99-113, (2007). [CrossRef] [Google Scholar]
  5. K.M.S. Santos, A.B. Celeste, A. El-Shafie, ANNs and inflow forecast to aid stochastic optimization of reservoir operation, Journal of Applied Water Engineering and Research, 7(4), 314-323, (2019). [CrossRef] [Google Scholar]
  6. P.P. Hadiyan, R. Moeini, E. Ehsanzadeh, Application of static and dynamic artificial neural networks for forecasting inflow discharges, case study: Sefidroud Dam reservoir, Sustainable Computing: Informatics and Systems, 7, 100401, (2020). [CrossRef] [Google Scholar]
  7. Z.C. Herbert, Z. Asghar, C.A. Oroza, Long-term Reservoir Inflow Forecasts: Enhanced Water Supply and Inflow Volume Accuracy Using Deep Learning, Journal of Hydrology, 601 (2021). [Google Scholar]
  8. M. Yousefi, X. Cheng, M. Gazzea, A.H. Wierling, J. Rajasekharan, A. Helseth, H. Farahmand, R. Arghandeh, Day-ahead inflow forecasting using causal empirical decomposition, Journal of Hydrology, 613, (2022). [Google Scholar]
  9. M.A. Akgul, M. Cetin, Forecasting Dam Reserve Level Using Landsat 8 Sattelite Images, Dicle Unviversity Journal of Engineering 9(1), 493–502, (2018). (In Turkish) [Google Scholar]
  10. X. Zhang, P. Liu, Y. Zhao, C. Deng, Z. Li, M. Xiong, Error correction-based forecasting of reservoir water levels: Improving accuracy over multiple lead times, Environmental Modelling & Software 104, 27-39, (2018). [CrossRef] [Google Scholar]
  11. H. Arslan, F. Unes, M. Demirci, B. Tasar, A. Yilmaz, Estimation of Keban Dam Lake Level Change Using ANFIS and Support Vector Machines, Osmaniye Korkut Ata University Journal of Natural Sciences Institute, 3(2), 71-77, (2020). (In Turkish) [Google Scholar]
  12. T. Temiz, Y. Damla, E. Keskin, Comparison of Different Artificial Neural Network Methods in Determining Reservoir Capacity, Erzincan University Journal of Science and Technology, 15(1), 183-203, (2022). [Google Scholar]
  13. S.F. Stefenon, L.O. Seman, L.S. Aquino, L.S. Coelho, Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants, Energy, 274, 127350, (2023). [CrossRef] [Google Scholar]
  14. S. Filiz, S. Cevik, P. Mizrak Ozfirat. Dam Reserve Ratio Estimation, in Abstract Book of 5th. National University Industry Cooperation Research and Development Congress, 12-13 December 2023, Manisa, Turkiye, (2023). (In Turkish) [Google Scholar]
  15. A.A. Semenoglou, E. Spiliotis, V. Assimakopoulos. Data augmentation for univariate time series forecasting with neural networks, Pattern Recogn. 134, 1–12, (2022). [Google Scholar]
  16. E. Egrioglu, E. Bas, M.Y. Chen. Recurrent dendritic neuron model artificial neural network for time series forecasting, Inf. Sci. 607, 572–584, (2022). [CrossRef] [Google Scholar]
  17. D. Ari, P. Mizrak Ozfirat. Comparison of artificial neural networks and regression analysis for airway passenger estimation, Journal of Air Transport Management 115, 102553, (2024). [CrossRef] [Google Scholar]
  18. IZSU, (www.izsu.gov.tr), “https://www.izsu.gov.tr/tr/BarajlarinSuDurumu/1” [Access: 21.03.2024] (In Turkish). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.